Arquivo da categoria: Atualização de Sistemas

MATURIDADE PARA INDÚSTRIA 4.0

Avaliação Quantitativa e Qualitativa do Nível de Tecnologia, Gestão e Pessoas para Implantação da Digitalização

A indústria de hoje está passando por mudanças profundas, movidas pela evolução tecnológica que as pessoas usam no dia a dia, criando um novo formato na cadeia de valor, desde como o cliente se relaciona com o produto que compra, passando pela forma de planejar e operar um processo industrial, veja no quadro nosso da apresentação alguns fatos que demonstram as questões das mudanças destes novos cenários.

Em termos de operação da indústria atual, na melhor das hipóteses, temos uma operação na cadeia de valor onde conseguimos enxergar o que está acontecendo, nem sempre em tempo real e podemos entender o passado, isto quando temos banco de dados para isto, mas ainda não é uma realidade comum.

A Indústria 4.0, sendo a transformação desta indústria, é o conceito de conectarmos toda a cadeia de valor do negócio em rede, utilizando de camada de dados, IoT Internet das Coisas e Computação em Nuvem, com objetivo de utilizar sistemas de Inteligência Artificial, melhorando a tomada de decisões e com visibilidade de dados, demonstrando os eventos futuros.

A indústria digital então, nada mais é, que a aplicação dos conceitos anteriores, fazendo com que toda esta cadeia de valor tenha interação em tempo real, respondendo o presente e o passado, como nas industriais atuais, mas como capacidade de mostrar as tendências futuras, eventos e ações em forma de prescrições, guiando a resultados mais efetivos, diminuindo os erros e diminuindo tempo de operações, do planejamento a logística.

A Transformação Digital é que permitirá construir a indústria do futuro, esta fábrica usará tecnologias habilitadoras da Indústria 4.0, terá um trabalhador preparado para lidar com máquinas e sistemas inteligentes e os processos são interconectados em tempo real, mas esta transformação é um processo em evolução nas empresas.

Para se chegar a Indústria 4.0, o primeiro passo é a digitalização da cadeia de valor, onde através a convergência de dados é possível interagir entre todos os setores, departamentos, pessoas e equipamentos, com a camada de dados disponível, podemos iniciar a jornada na fábrica inteligente, colocando sistemas de análise de dados, com visualização em tempo real, fazendo predição de eventos e adaptação de sistemas entre máquinas autônomas.

A digitalização hoje abre uma gama de oportunidades para a indústria, pois estamos em fase de transição, entendendo que estas lacunas poderão alavancar novas formas de produzir, aumentando produtividade, reduzindo custos e criando novos modelos. É importante entender esta janela do momento e saber utilizá-la, pois, com o uso intensivo destas tecnologias, que se dará de forma natural no tempo, todos estes processos entrarão em maturidade, e num futuro, não muito distante, teremos as Fábricas Digitais de fato, passando ao uso comum desta quarta revolução industrial, daí, todos serão iguais.

Ainda que algumas empresas, em situações reais raras, tenham a condições de dizer que suas fábricas já estão automatizadas, otimizadas e seus ativos entregam os resultados esperados, é imperativo entender que a Indústria 4.0 não é uma melhoria, mas sim, um mudança, questões como, forma de tomar decisões na fábrica, como á sua conexão em tempo real na cadeia de valor e como se usam sistemas para prever padrões, são as novas questões desta fábrica digital.

A Transformação Digital se dará pelas pessoas, daí é importante ter as seguintes questões para trilhar o caminho da mudança:

  • Como você está lidando com as pessoas/sua equipe a respeito da Transformação Digital?
  • Você já colocou as pessoas para pensarem/transformarem seus processos eliminando o meio e aplicando Ciência de Dados/ I.A.?
  • Você já fez uma Roadmap de tecnologia para apoiar a transformação dos processos de sua empresa através das pessoas sendo usuárias?

Há diversos benefícios em pensar a Indústria Digital, listamos abaixo uma lista dos principais elementos de impacto na indústria:

  • Diminuição dos erros e do tempo operacional na cadeia de valor;
  • Aumento da produção e redução de custos com a mesma planta;
  • Elevação no nível de segurança funcional, mais inteligente e virtual;
  • Setup mais rápido de máquinas e processos industriais;
  • Aproximação da cadeia de valor, do cliente ao fornecedor;
  • Personalização e customização nas linhas de produção;
  • Diminuição de operações, aumento da supervisão, elevação da inovação;
  • Trabalhará com mais ferramentas de gestão e tomada de decisões;
  • Poderá apontar eventos com mais eficiência e melhorar processos de forma mais rápida;
  • Diminuirá sobremaneira as imprevisibilidades do controle e manutenção industrial;
  • Transparência nas operações e nos negócios.

Entendendo todas estas questões, devemos dar nosso primeiro passo que é a Maturidade, técnica que indicará em que status você está na indústria, que te levará a Indústria Inteligente.

A Maturidade então, é a técnica que associa uma metodologia, onde é possível quantificar e qualificar o status atual de uma Tecnologia, Gestão e Conhecimentos (pessoas), de forma a mostrar a aderência de uso, permitindo criar diretrizes estratégicas para implantação da Digitalização e Indústria 4.0

Existem diversos modelos de maturidade, que podemos aplicar para responder questões de onde estou para onde vou, não é escopo de nosso texto explicar estas técnicas, no limitaremos a apresentar um modelo que é a adequação de alguns destes listados abaixo:

  • Indústria 4.0-MM
  • Industry 4.0 Maturity Model
  • Maturity Model for Data-Driven Manufacturing (M2DDM)
  • The IoT Technological Maturity Model
  • Toolbox Workforce Management
  • Guideline Industrie 4.0 VDMA
  • Industrie 4.0 Maturity Index
  • IMPULS – Industrie 4.0- Readiness
  • SMMI 4.0
  • The Digital Maturity Model 4.0
  • Manufacturing Value Modeling Methodology

Temos em nosso propósito deste texto, sugerir a aplicação de um modelo, não estamos estabelecendo, mas mostrando algo que é real e aplicável para utilizar como uma técnica.

É importante entender que as tecnologias que serão sugeridas na aplicação da Transformação Digital, devem adicionar valor aos negócios da seguinte forma:

  • Aumentando a eficiência na produção (processos);
  • Reduzindo custos (econômicos e financeiros);
  • Aumentando a segurança operacional e confiabilidade;
  • Criar novos modelos;
  • Elevando o conhecimento dos trabalhadores.

Entendendo que a Indústria 4.0 é um caminho, algumas questões são muito comuns para que ocorra esta transformação, são elas:

  1. É possível ter uma planta no formato da Indústria 4.0 sem Automação?

Não ! Ocorre que se não houver uma automação mínima, você está limitado a ações manuais, sistemas Ciberfísico que poder-se-iam operar a fábrica digital não poderão operar os sistemas produtivos.

  1. É possível iniciar uma jornada pela digitalização sem levar em consideração questões de otimização do processo?

Sim! Todavia a digitalização funciona como uma lente de aumento, o que é bom em sua linha de produção, aparecerá melhor ainda, e o que é ruim, ficará muito pior, por isso é importante, antes de fazer a digitalização, fazer um levantamento de otimização de sua linha de produção (Manufatura Enxuta, Eficiência Energética, Controle Avançado, Controle em Tempo Real).

Levar a Maturidade para a Indústria é um processo que envolve algumas etapas sugestivas:

  • Fazer um Workshop na empresa, de forma a empoderar os funcionários da fábrica;
  • Apresentar o projeto (proposta) de maturidade a alta gerência da empresa;
  • Fazer o levantamento de dados com equipe competente para isso;
  • Elaborar um pré-relatório apontando as principais ações verificadas;
  • Fazer uma reunião com o cliente e aplicar a técnica da eleição de prioridades de projetos;
  • Finalizar o documento e apresentar a equipe da empresa em formato de Roadmap, lembrando que a Análise de Maturidade é um documento de nível Estratégico.

Quais são os itens que o questionário de maturidade irá verificar na planta industrial? Abaixo listamos uma sugestão de itens aplicados em diversos trabalhos realizados com boa aderência de realidade:

  • Integração de sensores, transmissores e atuadores
  • Comunicação e conectividade
  • Funcionalidades de armazenamento de dados e troca de informações
  • Monitoramento do processo/fábrica
  • Operações humanas no processo produtivo – automação
  • Automação do processo/fábrica
  • Otimização do processo/fábrica
  • Sensoriamento para digitalização
  • Infraestrutura de redes
  • Segurança da informação e cibersegurança
  • Camada de IoT, IIoT e Cloud Computing
  • Visualização das informações
  • Inteligência artificial – uso
  • Atividades operacionais rotineiras
  • Eventos operacionais e de manutenção
  • Acompanhamento e registro operacional
  • Comunicação operacional na indústria
  • Tomando decisões na planta

Veja na apresentação o modelo de verificação dos índices de cada item acima relacionado, perfazendo a graduação de 1 a 5 de cada elemento, monte uma tabela e vá, através de entrevistas, preenchendo os formulários.

Estes formulários deverão contemplar documentos, fotos, indicar os Gaps ou limitações encontradas, status atual, oportunidade de melhorias e como as pessoas interagem com estes itens, com isso, será possível montar um mapa de soluções baseado nas diretrizes abaixo.

Quais são as etapas técnicas que devo observar para a implantação da digitalização:

  • Entenda onde está e onde quer chegar;
  • Faça automação;
  • Faça otimização;
  • Faça convergência de dados;
  • Crie uma camada de IoT e use Nuvem;
  • Cuide da Segurança de Dados e Cibersegurança;
  • Monitore dados com KPI;
  • Crie um Big Data;
  • Implante Mineração de Dados;
  • Implanta Aprendizado de Máquina;
  • Use Tecnologias Habilitadoras.

Quais são as etapas da transformação digital que devo observar para a implantação da digitalização:

  • Entenda onde está e onde quer chegar;
  • Foque nas pessoas, elas vão transformar processos (treine e qualifique);
  • Mude processos, eliminando todas fases intermediárias (meio);
  • Use ferramentas on-line com dashboards inteligentes com a cadeia de valor conectada;
  • Guie a tomada de decisões baseado em eventos e predição I.A. Inteligência Artificial;
  • Tome decisões baseado em Mineração de Dados;
  • Use sistemas de Aprendizado de Máquina para tomar decisões autônomas;
  • Use Tecnologias Habilitadoras para acelerar o processo de transformação.

Construa um Roadmap, isto é, um mapa de ações com os projetos listados, baseado nas diretrizes acima listados, referenciados para lista de maturidade de cada item, onde possa apontar as fases baseadas no tempo.

Após o trabalho de maturidade, onde permite criar um mapa de ações, podemos partir para as fases de projetos (viabilidade) e implantação (teste e escala), vejam as apresentações específicas no site.

Entender e aplicar a Técnica de Análise de Maturidade para a construção da Transformação Digital é o primeiro passo, sólido, rumo a Indústria 4.0, olhando a importância das pessoas, que vão trabalhar na Fábrica Digital do Futuro.

MANUTENÇÃO 4.0

Os Impactos na Manutenção Industrial com a Digitalização e a Indústria 4.0

Na Cadeia de Valor da indústria, a manutenção tem um papel fundamental, o de manter a disponibilidade produtiva e permitir o uso dos ativos em todo o seu ciclo de vida, no menor custo operacional.

A Digitalização está provocando uma grande mudança na forma de executar a manutenção na indústria, considerando que a Indústria 4.0 é o impacto de toda a nossa Cadeia de Valor, já estudado anteriormente, neste texto vamos colocar foco nos impactos desta manutenção, que no caso, vamos chamar de Manutenção 4.0.

Em nosso contexto de estudo, vamos descrever alguns temas, com isso delimitarmos nosso assunto, todavia, não queremos esgotar as discussões, nosso objetivo é demonstrar de forma prática e direta:

  • Como melhorar índices de Disponibilidade, Ciclo de Vida e Custo com a Digitalização da Fábrica;
  • Como evoluir o modelo de Manutenção dentro dos requisitos da Indústria 4.0;
  • Como utilizar tecnologias digitais, mudar processos e treinar pessoas para uma nova realidade da Indústria.

Para entender a evolução da manutenção, de forma simplificada, vamos relembrar:

  • Manutenção Reativa: se quebrar, conserta;
  • Manutenção Preventiva: consertar sem estar quebrado;
  • Manutenção Proativa: consertar o que está ruim (hoje);
  • Manutenção de Confiabilidade: consertar o que ficará ruim (futuro) – objeto de nosso estudo.

A Manutenção 4.0 funciona complementado a manutenção convencional, existente na fábrica, porém vamos considerar uma indústria que tem a manutenção proativa implantada, uma vez que a Indústria 4.0, necessita de algumas premissas, já discutidas anteriormente.

A manutenção existente em uma planta, normalmente responde o que aconteceu e porque aconteceu, baseado nos equipamentos e, seus técnicos, respondem o que está acontecendo, tudo isso dentro do presente e o passado dos eventos.

Com as tecnologias da Indústria 4.0 implantadas, nós adicionamos o elemento futuro na manutenção, passado a responder o que irá acontecer, aplicando uma camada de IoT Internet das Coisas na gestão dos ativos e usando I.A. Inteligência Artificial, apoiando o técnico de manutenção na tomada de decisões futuras.

Os sistemas aprendem baseado na coleta de dados dos ativos de planta, estes dados são enviados para camadas de Computação em Nuvem (Cloud), onde nesta, utilizamos algoritmos de predição, que podem ser baseados em Mineração de Dados e/ou Aprendizado de Máquina.

O sistema se torna mais eficiente, porque ao utilizar o monitoramento de tempo real, promovido pela camada de IoT, associado ao uso de I.A., permite diminuir o tempo de tomada de decisões, do advento do Evento à Ação Realizada pela manutenção, aumentando sobremaneira a disponibilidade da planta.

Quanto as tecnologias da Indústria 4.0, há diversas, e não queremos limitar o assunto, todavia para fins de estudo, precisamos entender que há um pré-requisito para implantação da Indústria 4.0, que passa pela Automação, Otimização e Convergência, a Digitalização Básica, é o próximo passo, isto é, tecnologias que estão dentro de qualquer contexto de digitalização, que são, IoT Internet das Coisas, Cibersegurança, Computação em Nuvem e Big Data, e finalizando, podemos utilizar a terminologia das Tecnologias Habilitadoras (é uma proposta de estudo), que na prática, viabilizam e aceleram o processo de Digitalização, tais como, Drones, Cobos, Aprendizado de Máquina, Impressão 3D, AGV, Realidade Aumentada, Realidade Virtual, Gêmeos Digitais, entre outras, lembrando que esta tecnologias são dinâmicas e estão em constante evolução e mudança.

Existem diversas dimensões e estudos referentes a manutenção industrial, em nosso texto, vamos trabalhar em três panoramas propostos, com isso vamos construir soluções para uma manutenção inteligente:

DISPONIBILIDADE – Manter equipamentos em funcionamento o maior número de horas na produção – foco da manutenção:

  • Falha no uso
  • Desgastes
  • Falha na aplicação

CICLO DE VIDA – Utilizar o equipamento ao longo de seu ciclo de vida, dentro de parâmetros técnicos e de custos – foco da manutenção:

  • Descartes por mudanças
  • Mudanças tecnológicas
  • Dificuldade operacional ao longo do tempo

CUSTO DE O&M (Operação e Manutenção) – Utilizar o equipamento dentro do TCO Custo Total de Aquisição, dentro dos parâmetros de planejamento e uso – foco da manutenção:

  • Falhas na operação
  • Descontinuidade de peças
  • Uso inapropriado

Com as tecnologias evoluindo, os processos se tornaram mais complexos, exigindo pessoas mais capacitadas para lidar com toda a situação de uma nova manutenção, abaixo descrevemos os principais desafios em função destes impactos:

  • Identificação de problemas e suas causas;
  • Complexidade da solução (conhecimento, recursos e tempo);
  • Retomada da produção do processo (setup e comissionamento).

Como havíamos dito, não queremos montar uma receita, ou limitar o assunto, porém apresentaremos abaixo as principais soluções de Digitalização que levam a Manutenção 4.0, vamos descrever cada uma:

  • Ações de manutenção baseada em Eventos;
  • Gerenciamento de Ativos em rede e Cloud Computing;
  • Uso de Realidade Aumentada;
  • Criação de Modelos de Predição (Machine Learning);
  • Eliminar Manutenção Preventiva;
  • Conectar Inventário de Fábrica;
  • Monitorar Técnico de Manutenção (Segurança);
  • Uso de acesso Remoto (Drone e VPN).

Ações de manutenção baseada em Eventos

  • Não há tomada de ações sem um evento devidamente sinalizado por um modelo inteligente;
  • Quanto maior a capacidade de coleta de dados (IoT) maior a capacidade de análise Data Science;
  • Manutenção baseada em eventos com I.A. permite decisões baseada em Prognósticos.

Gerenciamento de Ativos em rede e Cloud Computing

  • Uso de protocolos industriais em todos os sensores e atuadores existentes, bem como, controles, hardware e software;
  • Criação de camadas de rede, sensoriamento adicional com IoT, convergência de sistemas;
  • Envio de dados para sistemas locais com diagnósticos e envio para Cloud para análise de prognósticos.

Uso de Realidade Aumentada

  • Com a camada de ativos digitalizada e IoT, mapear ativos físicos e relacionar operação e manutenção;
  • Incorporar procedimentos de operação, manutenção e segurança, em ferramentas de análise de campo (óculos, tabletes, celulares);
  • Interagir técnico e sistema dentro de ambiente de realidade aumentada, permitindo os sistemas aprenderem com eventos.

Criação de Modelos de Predição (Machine Learning)

  • Digitalizar equipamentos de manutenção e ativos de planta, enviando para camada em Cloud via IoT;
  • Conectar todos os bancos de dados da planta, planejamento de manutenção, inventário e técnicos, realimentar (aprendizado);
  • Criar modelos de predição e prognóstico, baseado em dados de ativos e conhecimentos prévios dos técnicos.

Eliminar Manutenção Preventiva

  • Focar na substituição de ações de prevenção baseado em diagnóstico por ações baseada em confiabilidade – prognósticos inteligentes;
  • Criar modelos de forma a analisar disponibilidade, ciclo de vida e custo do ativo, focar no melhor ponto de uso, usar I.A.;
  • Conectar o planejamento e técnicos em uma sala para tomada de decisões orientadas a eventos de prognósticos.

Conectar Inventário de Fábrica

  • Conectar à rede de ativos no planejamento e inventário de fábrica;
  • Analisar dados de manutenção com peças de reposição e seu comportamento e padrões, de forma a otimizar custo e tempo;
  • Conectar ativos e inventários com os fornecedores e assistência técnica autorizada.

Monitorar Técnico de Manutenção (Segurança)

  • Usar sensores de geoposicionamento na equipe de manutenção para análise de permissões;
  • Usar sensores de gases nos técnicos e monitoramento de sinais vitais na camada de IoT, relacionando operação e segurança;
  • Conectar ações de segurança operacional com os técnicos, tudo na rede, analisando permissões, contingência e cenário de trabalho.

Uso de acesso Remoto (VPN)

  • Conectar ativos críticos e de terceiros aos seus respectivos fornecedores e com os técnicos externos;
  • Usar análise de dados interna do Big Data e dados dos sistemas terceiros para planejamento de paradas e intervenções;
  • Permitir acesso remoto para análise de desempenho e gestão do ativo por um terceiro como serviço.

Uso de acesso Remoto (Drones)

  • Utilizar Drones em inspeções de difícil acesso e com problemas de segurança em plantas;
  • Drones para fazer mapeamento e planejamento de prioridades de manutenção em estruturas e vasos de pressão;
  • Análise de perímetro para segurança de acesso e movimentação crítica (Cibersegurança).

Com a Manutenção 4.0, teremos um novo profissional de manutenção, que deverá adquirir novos conhecimentos e habilidades para lidar com a Digitalização na indústria, pontuamos abaixo os principais pontos a observar:

  • Aprender análise e aquisição de dados – IoT e Data Science;
  • Criar modelos para aprendizado de máquina – Machine Learning;
  • Usar ferramentas de manutenção remota.

Concluímos que a aplicação da Digitalização na Indústria, leva a uma Manutenção Industrial que assume outro perfil, onde o foco passa a ser a antecipação de eventos e uso de ferramentas remotas, permitindo que a Indústria 4.0 eleve o padrão de produção industrial.

MANUFATURA 4.0 x PROCESSO 4.0

A Diferença da Digitalização e Indústria 4.0 entre Produção de Produtos Manufaturados e Processos Contínuos

A Indústria 4.0 nasce nos modelos de produção de manufatura, porém o conceito tecnológico está em todos os tipos de indústria.

A rigor, a Indústria 4.0 independe do modelo produtivo, uma vez que o conceito de produção industrial é a transformação de matérias primas em produtos consumíveis ou utilizáveis, todavia, existe uma diferença entre o foco na Digitalização na Manufatura e nos Processos Contínuos.

Neste contexto, vamos entender as diferenças que existem nestes dois tipos de indústria, uma vez que podemos dividir o setor industrial nestes dois grandes grupos, mas não vamos esquecer da produção em Lote, ou Batelada.

Veremos que o foco de projetos e resultados da Digitalização e Indústria 4.0 nestes segmentos, são diferentes, lembrando que um não exclui o outro, mas tem pesos e impactos diferenciados que devem ser observados.

Quanto ao impacto nas Pessoas e Processos, vamos descrever também suas diferenças, pontos importantes a observar na implantação e projetos.

A Transformação Digital na indústria é a aplicação das tecnologias da Digitalização, de forma a impactar toda a cadeia de valor, nas dimensões Tecnologia, Processos e Pessoas, orientado pelos seguintes itens de uso:

  • Digitalização de Ativos e Operações (IoT);
  • Conexão da Cadeia de Valor (IIoT);
  • Uso de Recursos de Cloud Computing;
  • Utilização de I.A. para Tomada de Decisões;
  • Uso de Tecnologias Habilitadoras.

O conceito e Indústria 4.0 é a interconexão de toda a cadeia de valor (Informações + Pessoas + Equipamentos) conectados em rede, utilizando Inteligência Artificial para a TOMADA DE DECISÕES na Indústria.

Quanto as tecnologias da Indústria 4.0, há diversas, e não queremos limitar o assunto, todavia para fins de estudo, precisamos entender que há um pré-requisito para implantação da Indústria 4.0, que passa pela Automação, Otimização e Convergência, a Digitalização Básica, é o próximo passo, isto é, tecnologias que estão dentro de qualquer contexto de digitalização, que são, IoT Internet das Coisas, Cibersegurança, Computação em Nuvem e Big Data, e finalizando, podemos utilizar a terminologia das Tecnologias Habilitadoras (é uma proposta de estudo), que na prática, viabilizam e aceleram o processo de Digitalização, tais como, Drones, Cobos, Aprendizado de Máquina, Impressão 3D, AGV, Realidade Aumentada, Realidade Virtual, Gêmeos Digitais, entre outras, lembrando que esta tecnologias são dinâmicas e estão em constante evolução e mudança.

O que é a Indústria da Transformação ou Manufatura:

  • Transforma e agrega materiais;
  • Fabrica componentes ou conjuntos;
  • Constrói um produto final ou subproduto;
  • É baseado em produção puxada;
  • É sensível ao fornecimento externo;
  • Produz lotes para um nicho de cliente;
  • Produção baseada em tempos e movimentos;
  • Produtos especiais são caros ou inviáveis.

O que é a Industria de Processos Contínuos:

  • Transforma produtos primários;
  • Fabrica produtos processados;
  • Fornece produtos final ou subproduto;
  • É baseado em produção por safra ou lote;
  • É sensível ao fornecimento de matéria prima;
  • Produz grandes lotes (commodities);
  • Produção baseada em transformação fisioquímica/biológica;
  • Somente escala de produção viabiliza custo.

Entendendo os contextos acima apresentados, vamos entender alguns principais desafios destes tipos de indústria:

MANUFATURA

  • Produzir em baixa escala com custo competitivo produtos especiais;
  • Produzir produtos especiais em grande escala sob medida;
  • Eliminar o Lead Time da Cadeia de Fornecimento (do P&D a Logística).

PROCESSOS CONTÍNUOS

  • Variabilidade de carga influencia no custo de produção;
  • Identificar Lacunas de oportunidade de elevação de produção;
  • Antecipação de eventos de Operação e Manutenção.

SOLUÇÕES E FOCO DE PROJETO

MANUFATURA

Como produzir em baixa escala com custo competitivo produtos especiais?

  • Projetar e implantar a Fábrica Flexível, que permita a Massificação da Personalização.

Como produzir produtos especiais em grande escala sob medida?

  • Projetar e implantar a Fábrica Descentralizada, que permita a Customização em Massa.

Como eliminar o Lead Time da Cadeia de Fornecimento (do P&D a Logística)?

  • Projetar e implantar a Fábrica Interoperável, que permita a Interoperabilidade da Cadeia de Valor.

>> Vejam as arquiteturas na apresentação e quanto aos conceitos verificarem Artigos Técnicos anteriores que já foram escritos.

PROCESSOS CONTÍNUOS

Como diminuir a variabilidade de carga influencia no custo de produção?

  • Implantar Controle Avançados APC com I.A. Inteligência Artificial para eliminar a variabilidade.

Como identificar Lacunas de oportunidade de elevação de produção?

  • Implantar Otimização em Tempo Real RTO com I.A. Inteligência Artificial para elevação de ponto ótimo de operação.

Antecipação de eventos de Operação e Manutenção?

  • Implantação de Gestão de Ativos com I.A. Inteligência Artificial para focar Manutenção com Prognóstico.

>> Vejam as arquiteturas na apresentação e quanto aos conceitos verificarem Artigos Técnicos anteriores que já foram escritos.

Como são os Processos de Batelada ou em Lote:

  • Preparação de carga de matéria prima ou produto final;
  • Processo que depende de TEMPO de REAÇÃO (física, química ou biológica);
  • A operação e qualidade se torna crítica se houver dependência de expertise operacional;
  • Repetibilidade é o que produz estabilidade na produção;
  • Em processos alimentícios o CIP Limpeza, faz parte do tempo de produção;
  • Capacidade de troca de receitas, diminui Lead Time na produção.

Na Digitalização de Processos de Batelada ou em Lote, é importante observar os principais pontos desafiadores neste tipo de fabricação:

  • Digitalizar o processo de modo a diminuir a Expertise de operação, isto é, o conhecimento do processo está na nuvem (Cloud);
  • A partir da digitalização, é possível analisar padrões produtivos, de forma a otimizar a produção pelo comportamento a cada lote processado;
  • A I.A. Inteligência Artificial apoiar a tomada de decisões na Receitas produtivas, servido de apoia a tomada de decisões junto aos gestores.

Em relação as Pessoas e Processo, podemos analisar seus principais impactos, fazendo uma relação antes (Como é), e depois (Como será):

Como normalmente é na Indústria:

  • Planejamento não acompanha produção – produção é puxada não conecta na cadeia de valor;
  • Operação toma ações locais e gestores tem expertise para tomada de decisões de produção para meta;
  • Manutenção analisa comportamento de ativos, usa preventiva e para processos para correções.

Como será esperado após a digitalização:

  • Planejamento e produção conectados em tempo real sob demanda – conectados na cadeia;
  • Operação supervisiona, máquina opera, gestor toma decisões baseado em Big Data e puxa otimização;
  • Manutenção trabalha com gestão de ativos baseado em condições, foco em prognóstico futuro – condições.

Para apoiar nos projetos propostos, nas dimensões Manufatura, Processos Contínuos e Batelada, sugerimos uma pesquisa nas Normas da ISA Sociedade Internacional de Automação, nos seguintes títulos:

ISA-106 – Processos Contínuos – Procedure Automation for Continuous Process Operations

ISA-88 – Controle de Batelada – Batch Control

ISA-95 – Integração de Fábrica – Enterprise-Control System Integration

Para complementar o foco de projetos nos dois tipos de produção industrial, podemos apontar algumas tendências tecnológicas, também nestas divisões:

Manufatura:

  • PROCESSOS: Fábricas mais perto dos consumidores;
  • TECNOLOGIA: Movimento entre máquinas com AGV;
  • PESSOAS: Muita personalização e customização de produtos.

Processos Contínuos:

  • PROCESSOS: Uso de Nanotecnologia para sensores;
  • TECNOLOGIA: Uso de DRONES para manutenção;
  • PESSOAS: Tomada de decisões baseado em I.A.

Concluímos que diversos são os impactos nas indústrias com a Digitalização, cada modelo produtivo tem um enfoque, tanto em tecnologia, processos ou pessoas. O importante é melhorar a qualidade e produtividade, de forma a extrair o que há de melhor neste momento da Indústria 4.0.

GESTÃO INDUSTRIAL 4.0

Os Impactos da Digitalização e a Indústria 4.0 na Linha de Produção Industrial e sua Cadeia de Valor

Entendendo que a Indústria 4.0 é a Digitalização de toda Cadeia de Valor da indústria, toda a gestão desta nova fábrica passa por grandes mudanças, nosso objetivo é descrever estas mudanças e seus impactos, para isso vamos contextualizar nosso foco, delimitando nosso tema e vamos chamar de Gestão Industrial 4.0, segue tema:

  • O que muda nos processos industriais com a implantação da digitalização?
  • Quais tecnologias são de maior impacto para a transformação da cadeia de valor?
  • Qual a nova forma de interação das pessoas na fábrica digital?

A Transformação Digital na indústria é a aplicação das tecnologias da Digitalização, de forma a impactar toda a cadeia de valor, nas dimensões Tecnologia, Processos e Pessoas, orientado pelos seguintes itens de uso:

  • Digitalização de Ativos e Operações (IoT);
  • Conexão da Cadeia de Valor (IIoT);
  • Uso de Recursos de Cloud Computing;
  • Utilização de I.A. para Tomada de Decisões;
  • Uso de Tecnologias Habilitadoras.

A Indústria Digital, se diferencia das plantas atuais principalmente, pela aplicação da tecnologia de I.A. Inteligência Artificial, permitindo uma gestão proativa, baseada em futuro, uma vez que os sistemas atuais permitem somente uma análise do passado e entender o presente momento da operação ou manutenção.

O conceito e Indústria 4.0 é a interconexão de toda a cadeia de valor (Informações + Pessoas + Equipamentos) conectados em rede, utilizando Inteligência Artificial para a TOMADA DE DECISÕES na Indústria.

Quanto as tecnologias da Indústria 4.0, há diversas, e não queremos limitar o assunto, todavia para fins de estudo, precisamos entender que há um pré-requisito para implantação da Indústria 4.0, que passa pela Automação, Otimização e Convergência, a Digitalização Básica, é o próximo passo, isto é, tecnologias que estão dentro de qualquer contexto de digitalização, que são, IoT Internet das Coisas, Cibersegurança, Computação em Nuvem e Big Data, e finalizando, podemos utilizar a terminologia das Tecnologias Habilitadoras (é uma proposta de estudo), que na prática, viabilizam e aceleram o processo de Digitalização, tais como, Drones, Cobos, Aprendizado de Máquina, Impressão 3D, AGV, Realidade Aumentada, Realidade Virtual, Gêmeos Digitais, entre outras, lembrando que esta tecnologias são dinâmicas e estão em constante evolução e mudança.

Vamos descrever abaixo, em formato de Tópicos (4.0), as principais mudanças, impactos e o que deve ser observado com a Digitalização na indústria, descrevemos os principais quadros da composição da Cadeia de Valor, com isso podemos entender toda a dinâmica e alterações esperadas, lembrando que com isso, pode-se projetar e implantar os sistemas com aderência da Indústria 4.0.

CLIENTES 4.0 – Tecnologias, Mudanças, impactos e novo perfil

  • Cliente é responsivo a fábrica;
  • Interfere na produção;
  • Produz ou coproduz seu produto;
  • Personaliza e customiza;
  • Escolhe o produto final e acompanha;
  • Prefere usar ao comprar;
  • Tecnologia é transparente e fluída.

MARKETING 4.0 – Tecnologias, Mudanças, impactos e novo perfil

  • Traz o cliente para criar o produto;
  • Monitora uso pós-fábrica;
  • Monitora fim do ciclo de vida;
  • Atualiza produto antes do ciclo de vida;
  • Retém o cliente pelo serviço;
  • Entrega facilidades;
  • Foco no Valor da marca na Sociedade.

P&D 4.0 Pesquisa e Desenvolvimento – Tecnologias, Mudanças, impactos e novo perfil

  • Virtualização;
  • Gêmeos Digitais;
  • Simulação;
  • Geração Automática de Documentos;
  • Monitoramento de Mercado;
  • Criação de Peças ou Equipamentos 3D.

PLANEJAMENTO 4.0 – Tecnologias, Mudanças, impactos e novo perfil

  • Planejamento automatizado (PCP On-Line);
  • Modelos consolidados entre P&D e Produção;
  • Conexão em Tempo Real com Produção;
  • Conexão em Tempo Real com Logística e Vendas;
  • Uso de Simuladores de Cenários;
  • O cliente conectado em Tempo Real;

FORNECEDOR 4.0 – Tecnologias, Mudanças, impactos e novo perfil

  • Está conectado em tempo real na fábrica;
  • Interpreta o consumidor final;
  • Co-cria o produto final no seu cliente;
  • Monitora o uso e qualidade de seu fornecimento;
  • Entrega serviços e simplifica operação no cliente;
  • Monitora ciclo de vida;
  • Foca no serviço.

PRODUÇÃO 4.0 – Tecnologias, Mudanças, impactos e novo perfil

  • Produção Guiada pelo Futuro (WAZE);
  • Mudar de Operador faz para Operador Supervisiona;
  • Usar ferramentas Realidade Aumentada;
  • Usar AGV para transporte Interno;
  • Usar Mineração de Dados para Tomada de Decisões de Gestores;
  • Usar Machine Learning para Automação de Tarefas;
  • Evoluir em Deep Learning.

MANUTENÇÃO 4.0 – Tecnologias, Mudanças, impactos e novo perfil

  • Ações de manutenção baseada em Eventos;
  • Gerenciamento de Ativos em rede e Cloud Computing;
  • Uso de Realidade Aumentada;
  • Criação de Modelos de Predição (Machine Learning);
  • Eliminar Manutenção Preventiva;
  • Conectar Inventário de Fábrica;
  • Monitorar Técnico de Manutenção (Segurança);
  • Uso de acesso Remoto (Drone e VPN).

QUALIDADE 4.0 – Tecnologias, Mudanças, impactos e novo perfil

  • Fim da Inspeção;
  • Equipamentos e Tarefas rastreadas;
  • Análise de Falhas em tempo real;
  • Cliente usuário monitorado em Tempo Real;
  • Uso de ferramentas de Visão;
  • Identificação e Ação sobre Padrões.

LOGÍSTICA 4.0 – Tecnologias, Mudanças, impactos e novo perfil

  • Planejamento de negócios e vendas On-Line com Fábrica;
  • Conexão em tempo Real com Fornecedores;
  • Conexão em tempo Real com Clientes;
  • Monitoramento de Transporte (Interno e Externo);
  • Identificações de padrões – Produção e Fluxo;
  • Encurtar qualquer tempo de espera (fim do estoque);
  • Eliminar o meio de processos que não agregam.

O fator PESSOAS deve ser considerado o mais importante no impacto da Indústria 4.0, quanto as mudanças, elegemos abaixo alguns itens que devem ser observados neste processo de transformação:

  • A máquina assume funções repetitivas e conhecidas – conhecimento em “ensinar” máquinas;
  • Os gestores tomam decisões baseada em Big Data – uso de Data Science como ferramenta básica;
  • Fábrica e mercado entram em convergência – capacidade de interpretar padrões e melhores cenários.

Muito está em desenvolvimento e evolução neste momento de Transformação Digital, dentro das dimensões Pessoas, Processos e Tecnologias, listamos abaixo as principais tendências em evolução:

  • Fábricas digitais ou baseadas na Indústria 4.0 estão sendo adaptadas ou construídas hoje, mas serão operadas por uma nova geração gameficada;
  • A tecnologia é só o meio, muitas se fundirão e surgirão outras, um dos maiores impactos será o 5G, alterando a comunicação de dados sem fio;
  • Acesso e velocidade continuará a quebrar modelos de negócios, principalmente, trocar compra pelo uso.

Concluímos que todos os setores de uma indústria serão alterados sobremaneira com a digitalização, usar tecnologia, treinar pessoas e inovar em processos, permitirá a fábrica digital ter uma competitividade nunca antes imaginada, é um caminho que já está sendo construído.

TRANSFORMAÇÃO DIGITAL

A Evolução da Automação Industrial no Contexto da Digitalização e Indústria 4.0

Após percorrer diversos trabalhos em indústrias, que tem o objetivo de trilhar o caminho da Digitalização, e receber diversos comentários sobre nossos artigos, solicitando para demonstrarmos como estruturar um projeto de Automação 4.0, apresentamos este trabalho, para você leitor técnico e estudante, não temos a intenção de esgotar o assunto e nem mesmo, postular um modelo, mas sim, demonstrar de forma prática e direta, considerações, que hoje devem ser levadas em conta, nos projetos de automação industrial, que vão permear a Indústria 4.0.

A Digitalização é a evolução do formato da linguagem humana, a forma de transferir conhecimento, bem como administrá-lo e deter o poder, remonta na época dos oradores, onde a palavra, bem-dita, demonstrava profundo conhecimento e respeito na sociedade, assim era a educação, a ciência, a política de uma época dos homens da oratória.

Com a evolução da escrita, com a prensa que pode disseminar a palavra impressa, temos um novo modelo de comunicação, textos, documentos, assinaturas, tudo isso, permeia nossa sociedade atualmente, ainda que em fase de transição para a digitalização, mas nosso modelo é baseado no documento, no livro, no impresso, na escrita.

O processamento de dados computacionais criou um novo formato de informação, os documentos, escritas, palavras e toda forma de comunicação, passaram a ser digitais, criando uma nova sociedade, pelo menos estamos nesta fase de transformação, já é possível assinar documentos de forma digital, dispensado a escrita manual ou assinaturas, governos administram documentos tudo de forma digital e assim caminha nossa sociedade.

Com a Digitalização, a comunicação em rede mundial e dispositivos capazes de gerar e analisar dados em tempo real, além de serem portáteis, temos o nascimento do que estamos chamando de Sociedade 4.0, onde todas as áreas da organização humana, são administradas através de dados digitais, governos, saúde, educação, segurança, mobilidade e a indústria, passam a relacionar nesta sociedade, utilizando-se de novas tecnologias, que podemos chamar de 4.0, somente como um alusão a 4.a Revolução Industrial, tendo assim a nossa Indústria 4.0, para ficar em nosso setor produtivo.

Para levar a indústria ao patamar digital, é necessário percorrer um caminho de transição, mas principalmente, projetar sistemas de automação para responder as necessidades da nova indústria digital.

O que conhecemos como Pirâmide da Automação, nossa Automação 3.0, é uma estrutura de camadas, onde sua intercomunicação é feita por diversas interfaces, mas tendo um modelo vertical, se limita a planta e seus departamentos, com pouca flexibilidade e alta latência para tomada de decisões.

A nova indústria digital, deve ser projetada com a Automação 4.0, baseado agora, nos Pilares da Automação, principalmente pelo fato que temos a interconexão de todas as informações, não só verticais, mas também horizontais e de toda a cadeia de valor do negócio, interagindo em tempo real.

Como dissemos, estamos em fase de transição, para evoluir de Pirâmide de Automação para Pilar da Automação, as principais mudanças serão:

  • No campo: aumento sobremaneira de dispositivo de sinais com a camada de IoT Internet das Coisas;
  • No controle: os controles serão distribuídos nos campos em dispositivos inteligentes e será supervisionado em uma camada de Cloud (nuvem);
  • Nos sistemas de gestão e controle (IHM, MES, Scada, ERP, BI, PCP): tendem a ser integrados, trabalhando em convergência um único ambiente de Cloud, ferramentas interconectadas;

Para projetar a Indústria 4.0, a partir de uma arquitetura de Automação 4.0, são necessárias algumas tecnologias, e principalmente, um novo formato de conectar dados, pessoas e processos.

Segue abaixo uma lista, não abrange todas as tecnologias, mas permeia os principais pontos hoje que devem ser observados para projetos de Automação 4.0:

  • Unidades de Controle Distribuído (campo) – módulos de I/O inteligentes (entrada e saída) e controle de baixa densidade de pontos, mas de alto poder de processamento e comunicação, distribuídos e interconectados;
  • Segurança (dados e informação) Campo (IoT) – como os módulos de I/O e controladores distribuídos e conectados em rede, normalmente em padrões baseado em Ethernet, o risco de invasão para acesso de dados é permanente, surgindo a necessidade de projetos de Cibersegurança;
  • Camada EDGE – camada de campo de Cloud, para tomada de decisões autônomas na célula de produção ou setor produtivo, a análise de dados se dá neste sistema, disponibilizando para o externo, somente o que é necessário para supervisão;
  • Conectividade (pilar de comunicação) – a conectividade e a Interface única de dados, deve permitir a interconexão de toda automação de forma vertical e horizontal, não há mais camadas, mas sim um inter-relacionamento de informações, um modelo baseado em RAMI 4.0, é um referencial para isto;
  • Unidades de Controle Distribuído (cloud) – as unidades de controle distribuído, também se comunicarão com um Cloud, local, porém com função de supervisão, baseado em dados de planejamento, recursos, qualidade, entre outros, formando um ecossistema único;
  • Cloud Local – a nova indústria digital, terá seus dados e controle centralizados em seu Cloud próprio, com suas ferramentas e necessidades próprias, podemos dizer que é CPD Centro de Processamento de Dados, para controlar o processo produtivo, somente externando o que é necessário;
  • PLC/DCS (virtual) – na mesma linha de ter o Cloud local, ferramentas de controle e comando, estarão centralizadas, camada de controle distribuído e local formarão um ambiente único digital de prioridades, tanto para controle avançado, quanto para gestão e supervisão de tomada de decisões produtivas;
  • Camada FOG – no mesmo objetivo da camada EDGE, porém agora tratando dados de todo planejamento e interfaces, para tomada de decisões inteligentes, unindo os dados;
  • Backbone de Dados (IIoT) – conectar a cadeia de valor da indústria, da unidade de negócio, é pré-requisitos para atender o conceito da Indústria 4.0, uma rede que tenha capacidade de conectar fornecedores, setores externos, clientes, e a própria indústria é necessário para interconexão, todos os elementos externos são a IIoT Internet Industrial das Coisas;
  • Cloud (Externo) – o uso de Cloud Computing externo, para aplicação de ferramentas, tais como, I.A. Inteligência Artificial, para tomada de decisões e uso de Big Data, unido todo o ecossistema do negócio industrial, entregando dinâmica de cenários para tomada de decisões, acelerando o tempo e diminuindo o erro.

O funcionamento básico desta estrutura digital de automação, tem como premissa a troca de dados em tempo real entre todos os componentes da rede e utilizar sistema para tomada de decisões, os principais pontos de funcionamento, podemos descrever:

  • No campo, o controle e o sinal são distribuídos, processamento local e análise de dados local;
  • Na conectividade, todos dispositivos devem permitir uma camada horizontal de dados, formando uma conexão interoperável;
  • O sistema possui um Cloud Local, com serviços de controle, supervisão e tomada de decisões no local e centralizado;
  • Um Backbone conecta toda a cadeia de valor da Indústria;
  • O Cloud externo, utiliza-se de serviços de I.A. Inteligência Artificial, interagindo na cadeia produtiva.

Quais os benefícios esperados, utilizando uma arquitetura de Automação 4.0, sendo um modelo para a realidade da Indústria 4.0, descrevemos os principais:

  • Flexibilizar a produção, através de controle distribuído e controle centralizado na camada de Cloud;
  • Simplificação na camada de comunicação, com uso de protocolos e interfaces abertas (OPC-UA e MQTT);
  • Tomada de decisões (Mineração de Dados e Aprendizado de Máquina) localmente (EDGE e FOG);
  • Utilizar o Cloud Externo somente sob Demanda;
  • Aplicar I.A. na Operação e Manutenção, com foco em Operador Supervisor e Manutenção por Prognósticos.

As tecnologias e o modelo de projeto destas arquiteturas são muito novas em termos de conhecimento, isso remete a desafios, podemos descrever alguns abaixo:

  • Projetar sistemas de automação com controle distribuído;
  • Projetar uma rede com protocolos e interfaces de dados horizontal;
  • Criar um sistema de virtualização local, permitindo processamento intermediário de Cloud (EDGE e FOG);
  • Interconectar a cadeia de valor através de um Backbone (IIoT Internet Industrial das Coisas);
  • Utilizar serviços externos de Cloud (na medida necessária) e aplicar I.A.

Como uma sugestão de principais pontos, podemos descrever o que deve ser observado em uma implantação de um projeto de digitalização, com foco na automação:

  • Projete seu processo produtivo em blocos de produção (quantidades) e linha de produtos (variedade);
  • Distribua os sinais e o controle pelas linhas ou unidade produtiva;
  • Utilize tecnologias de comunicação que necessitem o mínimo de interfaces ou gateways (OPC-UA e MQTT);
  • Crie camada de Cloud local (EDGE e FOG) e use análise de dados local (R e Python);
  • Crie comando e controles locais para atender produção flexível e centralizados, para supervisão da produção;
  • Conecte a cadeia de valor ao Cloud local para análise de dados (Use o RAMI 4.0)
  • Use o Cloud externo para utilização de ferramentas avançadas de dados (I.A. e Big Data).

Os sistemas, componentes e fornecedores, estão em constante evolução, hoje podemos apontar algumas tendências de curto prazo, para novas tecnologias, que já se apontam com realidade, para atender este escopo de necessidades:

  • Equipamentos de controle e I/O de pequeno porte e conectividade (OPC-UA, MQTT, TSN);
  • Micro PC Industrial distribuído, formando Cloud local em camadas de FOG e EDGE;
  • Fornecedores da cadeia de valor já terem dados estruturados para conexão padronizada (Cloud) em um Backbone de IIoT;
  • Serviços de Cloud externo de fabricantes, com soluções prontas para Indústria (SIEMENS, Rockwell, Yokogawa, Emerson, GE …).

Concluímos que os sistemas de automação industrial são a estrutura de comando e controle do setor produtivo, projetar sistemas para a indústria digital, atendendo a Indústria 4.0, é um caminho de novos desenvolvimentos, conceitos e modelos, exigindo novos pensamentos e quebra de paradigmas.

FDI NA AUTOMAÇÃO INDUSTRIAL

FDI Field Device Integration no Gerenciamento de Ativos na Indústria

A evolução nas conexões de dados industriais, é foco de nosso texto, grandes esforços e investimentos dos departamentos de pesquisa e desenvolvimento tecnológico estão criando novos padrões, equipamentos e softwares, permitindo pavimentar o caminho da Indústria 4.0.

Disponibilizamos três textos correlacionados, onde mostramos as novas tecnologias, o OPC-UA (OPC UA – Unified Architecture) , o TSN (Time-Sensitive Network) e o FDI (Field Device Integration), formando os novos padrões da conectividade industrial.

A transformação digital permitirá uma indústria mais inteligente, portanto mais eficiente, barata e segura, para que isso ocorra, a automação industrial tem grande papel nesta transformação, onde a Indústria 3.0, baseada na Pirâmide da Automação, se transforma nos Pilares da Automação, uma vez que Convergência, Padronização e Velocidade de dados, possibilitará que a Indústria 4.0 se torne uma realidade, rompendo as barreiras de interface, que hoje existem no modelo atual da indústria.

Quanto ao FDI, vamos falar sobre:

  • Conexão de dados de instrumentos de campo;
  • Ferramentas de Engenharia, Manutenção e Diagnóstico;
  • Gerenciamento de dados em rede industrial;
  • Convergência tecnológica de comunicação;
  • Padronização de conexões (solução aberta);
  • Evolução da conexão para IoT e Indústria 4.0.

Com o advento dos protocolos industriais e dispositivos comunicando em redes, o desenvolvimento de tecnologias que permitissem acessar dados, durante o funcionamento, para manutenção, comissionamento e monitoração, se tornaram uma realidade, as primeiras tecnologias foram baseadas em DD/EDDL em 2004, como evolução do conceito de acesso de dados, temos a tecnologia FDT/DTM em 2009 e sua evolução em 2015, com o FDI, esse é o destaque a evolução e vamos falar em mais detalhes de cada tecnologia.

EDDL Eletronic Device Description Language, é uma linguagem baseada em texto, os sistemas de automação acessam estes dados por um interpretador, é usada em forma binária DD Device Description (Hart e FF).

FDT/DTM Field Device Tool / Device Type Manager – é um sistema onde os fabricantes elaboraram os “drives” DTM (compilados) de cada equipamento e são acessados por um FDT (plataforma), o sistema depende de COM/DCOM.

Estas tecnologias têm algumas limitantes e novas demandas técnicas, podemos listar as principais:

  • Limites da EDDL por texto, limitante nas definições de dados e diagnósticos;
  • As DTM variam enormemente de fabricante para fabricante;
  • O FDT tem a dependência da COM/DCOM do Windows;
  • EDDL e FTD/DTM tem o mesmo objetivo, mas são divergentes nas soluções (como decidir?).

O FDI Field Device Integration – é uma tecnologia de comunicação de dispositivos de campo, usando rede de comunicação industrial, onde é utilizado o OPC-UA (Cliente-Servidor) unificando o modelo de informação dos dispositivos industriais.

Seus principais objetivos, como evolução dos sistemas EDDL e FDT/DTM, são:

  • Manter a compatibilidade com os sistemas legados existentes nas plantas industriais;
  • Unificar as especificações EDDL dos protocolos industriais compatíveis;
  • Manter o modelo compatível de acesso de dados via FDT.

As principais características desta tecnologia são:

  • Unificação – todas as informações (vertical e horizontal) se comunicam na rede por um único canal;
  • Padronização – independente do protocolo, o sistema permite troca de dados em diversas aplicações e níveis;
  • Interconexão – troca de dados entre equipamentos e aplicativos, utilizando rede industrial;
  • Interoperável – troca de dados entre fabricantes diferentes, compartilhando recursos;
  • Intercambiável – troca de equipamentos por outro fabricante, sem perder funcionalidade;
  • Extensibilidade – aumento de funções por agregação, sem perder o que já existe
  • Escalar – permite implantações pequenas e crescimento de acordo com a necessidade, com todas funções.

Os principais benefícios do uso do FDI, são:

  • Fácil de usar – ótima experiência para o usuário;
  • Robusto na instalação – a instalação dos drives não provoca alterações nos sistemas de automação;
  • Interoperável e em conformidade – compatível com as EDDL e experiência das DTM padronizadas;
  • Integrável e convergente – fácil trocar informações com níveis ERP e MES, por exemplo, usando o OPC-UA;
  • Manutenção de versões – compatível com versões anteriores de software e suporte as DD e DTM existentes.

O sistema do FDI se destaca por incorporar no em seu aplicativo as DP (Device Package), entenda como elas funcionam no servidor FDI:

  • DD Device Definition – faz a definição das variáveis e blocos funcionais
  • UID User Interface Description – menu dos equipamentos
  • BL Business Logic – organiza os endereçamentos dos equipamentos
  • UIP User Interface Plug-in – interface com o usuário (gráfico)
  • Dentro do DP pode-se anexar documentos dos devices

Quanto ao princípio de funcionamento do sistema do FDI:

  • O servidor FDI é quem concentra a comunicação com a rede, normalmente conectado em um controlador que faz o roteamento de dados;
  • No servidor FDI são instados os Device Package de cada equipamento, com suas definições, modos de acesso e interfaces;
  • A comunicação é feita pelo OPC-UA, permitindo que OPC-Client e FDI-Client acesse dados do servidor, utilizado em aplicativos de manutenção, monitoração, gestão (ERP, MES) e outros.

As arquiteturas dos sistemas de automação em rede, permite a conexão com o FDI, onde instala-se os drives de cada equipamento/fabricante, suportando diversos protocolos, já compatíveis no mercado.

Na operação, temos os servidores FDI, servindo dados para os Clientes, que poderão executar manutenção, operação, monitoração, engenharia, configuração, otimização e comissionamento com os equipamentos do sistema.

A aplicação de destaque do FDI está no Gerenciamento de Ativos, o sistema de automação, montado em uma rede industrial, agora com destaque a diversos padrões e protocolos, utilizando OPC-UA, pode-se executar todas as rotinas já descritas.

Com o FDI e a Indústria 4.0, o Gerenciamento de Ativos passa para um outro patamar de aplicação, incorporando novas ferramentas, podemos destacar as principais funções de um sistema atual e digitalizado:

  • Parametrização de equipamentos e dispositivos;
  • Análise on-line de status de funcionamento;
  • Controle de acesso de usuários;
  • Registro de alterações – rastreabilidade;
  • Avaliação de performance – índice;
  • Otimização de processo;
  • Gerencia dados para Cloud Computing;
  • Emite prognóstico usando Machine Learning.

Como continuidade na evolução da tecnologia, podemos destacar algumas tendências:

  • Serviços gerenciamento de dispositivos via FDI serem via Cloud com suporte do fabricante;
  • Equipamentos com OPC-UA Server incorporados, comunicando diretamente no Cloud FDI;
  • Protocolos e dispositivos de IoT (industrial), incorporarem a tecnologia FDI para gerenciamento.

Concluímos que o gerenciamento de dispositivos industriais (ativos) é uma realidade na indústria moderna, sua evolução está orientada na predição e prognóstico, via Cloud Computing, usando ferramentas de Machine Learning, para isso, a tecnologia FDI permite a interconexão entre dispositivos e sistemas, de forma simples e universal, aderente a Indústria 4.0.

REDES TSN NA AUTOMAÇÃO INDUSTRIAL

Redes Ethernet de Tempo Real – A TSN – Time-Sensitive Networking na Indústria

A evolução nas conexões de dados industriais, é foco de nosso texto, grandes esforços e investimentos dos departamentos de pesquisa e desenvolvimento tecnológico estão criando novos padrões, equipamentos e softwares, permitindo pavimentar o caminho da Indústria 4.0.

Disponibilizamos três textos correlacionados, onde mostramos as novas tecnologias, o OPC-UA (OPC UA – Unified Architecture) , o TSN (Time-Sensitive Network) e o FDI (Field Device Integration), formando os novos padrões da conectividade industrial.

A transformação digital permitirá uma indústria mais inteligente, portanto mais eficiente, barata e segura, para que isso ocorra, a automação industrial tem grande papel nesta transformação, onde a Indústria 3.0, baseada na Pirâmide da Automação, se transforma nos Pilares da Automação, uma vez que Convergência, Padronização e Velocidade de dados, possibilitará que a Indústria 4.0 se torne uma realidade, rompendo as barreiras de interface, que hoje existem no modelo atual da indústria.

Para entender as redes TSN, vamos falar de:

  • Evolução das Redes Ethernet;
  • As limitações das Redes Ethernet;
  • Ethernet em Tempo Real e com Priorização;
  • Padronizando a comunicação em Ethernet;
  • As demandas na Indústria 4.0.

Para entender os principais pontos da evolução das redes Ethernet, em seu conceito principal, ela trabalha com modelo de colisão de dados (CSMA-CD), não sendo determinística, em seu primórdio, era uma rede lenta, mas atendia a sua realidade e foi a aposta certa na tecnologia.

Baseado no mesmo modelo apresentado, as redes Ethernet se tornaram muito rápidas, 100M, 1G, 10G e são controladas por Switches configuráveis, controlando todo o tráfego de rede, apesar de ainda trabalhar no conceito (CSMA-CA), a questão determinística foi superada pela velocidade e controle da rede.

Mas novas questões, tais como, IoT (Internet das Coisas), que remetem a milhares de dispositivos conectados a um único Backbone de dados, priorização de mensagens críticas, unificação da interface de troca da informação, foram necessidades que levaram ao advento das redes TSN.

Em linhas gerais, os desafios e indagações que permearam esta tecnologia, foram:

  • Como fazer convergência de dados no nível de TO + TI + IoT com alta largura de banda, alta velocidade?
  • Como ter a certeza dos tempos de sincronização e priorização de mensagens dentro da Rede Ethernet (determinismo)?
  • Como manter a base padrão Ethernet e incorporar protocolos de alto desempenho industrial e de IoT?

Surgem as Redes TSN – Time-Sensitive Networking ou Redes Sensíveis ao Tempo, que:

  • São um conjunto de padrões do IEEE 802 elaborados para aprimorar a Rede Ethernet;
  • Seu objetivo é ter o controle da Latência da Rede permitindo uma Rede Determinística e Unificada;
  • O padrão permite a incorporação de Protocolos (OPC-UA, IEC61850, Profinet…) e é compatível com o padrão existente.

As principais características das Redes TSN:

  • Permite convergência de Dados (TO+TI+IIoT) em único padrão;
  • Rede muito rápida (microssegundos);
  • Possui alta largura de banca de dados (backbone);
  • Permite uso do padrão existente (legado);
  • Controla o tempo de latência de dados na rede (sincronização);
  • Controle de prioridades de dados e seu comportamento;
  • Incorpora protocolos existentes industriais e de IoT;
  • Permite ser um padrão único do sensor no campo ao Cloud;
  • Permitir virtualização de redes.

Principais benefícios no uso das Redes TSN:

  • Alta velocidade;
  • Baixa latência;
  • Tempo real;
  • Determinística (aplicação crítica);
  • Flexibilidade;
  • Alta disponibilidade;
  • Dado horizontal e vertical (único);
  • Segura.

As arquiteturas das Redes TSN, seguem o mesmo modelo das Redes Ethernet convencionais, lembrando que os equipamentos devem suportar esta tecnologia e a rede deve ser configurada para as funções específicas do novo padrão, principalmente os tempos, além de comunicações em Cloud.

Quanto ao princípio de funcionamento da rede, podemos destacar as suas operações:

  1. Sincronização de tempo (tempo real) – toda a rede tem o mesmo tempo (configurável);
  2. Agendamento e modelo de tráfego (regras – únicas e priorização);
  3. Seleção de caminhos de comunicação (configuração e alternativas);
  4. Reserva de trajeto (“vê” outro caminho);
  5. Tolerância a falhas (faz mais de um caminho).

Um dos pontos de destaques e principal recurso, que transforma a rede em determinística, é a função Time-Aware Scheduler, onde os pacotes de dados trafegam normalmente pelo sistema e quando há uma prioridade de dados (crítico), os pacotes comuns param e o pacote prioritário passa pelo sistema, isso permite comunicação crítica e baseado no tempo.

As redes TSN suportam diversos protocolos e cada vez mais estarão incorporados outros, gostaria de destacar o uso do Profinet, do próprio OPC-UA, do Ethernet/IP e o IEC 61850.

As redes TSN são preparadas para segurança de dados, são baseadas em Ethernet convencional, com as premissas conhecidas:

  • Utiliza o modelo de camadas;
  • No nível de dispositivo usa-se OPC-UA, permitindo:
    • Autenticação
    • Criptografia
    • Bloqueio (proteção)
  • Gerenciamento de fluxo de dados;
  • O determinismo não altera os modelos de segurança.

Nas aplicações das redes TSN o mais importante hoje é fazer um projeto com dispositivos que suportem o modelo, é uma tendência de grande crescimento em equipamentos que já se comunicam com o padrão Ethernet, podemos dizer que é quase um caminho natural, com isso sistemas de gerenciamento, roteamento e chaveamento da rede (Switch e Router), também suportarão o novo modelo.

As redes TSN com OPC-UA são uma grande tendência, pois:

  • Os fabricantes de equipamentos já estão incorporando juntamente com o OPC-UA o canal TSN nos dispositivos;
  • Temos os benefícios dos padrões OPC-UA e os ganhos em velocidade e performance de rede com o TSN;
  • A união destas duas tecnologias é uma realidade da convergência Tecnológica.

Quanto a aplicação e uso na Indústria 4.0, as redes TSN permitem e facilitam a:

  • Digitalização das Coisas (IoT);
  • Convergência da Cadeia de Valor (IIoT);
  • Uso de Cloud Computing;
  • Alta velocidade e Padronização.

Quanto a evolução natural do novo padrão, podemos destacar como tendência:

  • Equipamentos e dispositivos virem com recursos de comunicação nativa (OPC-UA + TSN);
  • As redes TSN podem se tornar o padrão Ethernet para todos os níveis de informação, inclusive de TI;
  • Recursos incorporados, tais como, SDN, IPV6 e Wireless, serão comuns nos dispositivos de automação.

Concluímos que a tecnologia das redes TSN são uma resposta às novas demandas da Indústria 4.0, convergência de dados com alta velocidade e alta disponibilidade, comunicação com integridade bidirecional, simplicidade do Backbone ao sinal de IoT, uma nova realidade nos ambientes de controle industrial.