Arquivo da categoria: Automação Industrial

REDES SDN NA AUTOMAÇÃO INDUSTRIAL

Aplicação das Redes Definidas por Software nos Sistemas Industriais (SDN Software Defined Networking)

As redes Ethernet permitiram conectar o mundo, num primeiro momento entre computadores, depois com a Internet como a conhecemos e agora com a IoT Internet das Coisas.

Os desafios frente as demandas deste padrão, consolidado no mundo, não param de permear área de pesquisa e desenvolvimento na área de comunicações de dados, pois desde o seu advento, nunca estivemos tão perto do seu limite tecnológico.

Quando pensamos em encaminhar pacotes de dados e roteamento entre redes, os padrões das conhecidas camadas 2 e camada 3 do modelo OSI (Open Systems Interconnect), já se definiram com seus modelos e protocolos, não conseguimos com estes padrões existentes, criar novos formados de controle de dados (exclusivos ou especiais).

Nesta mesma linha, gerenciar a rede de comunicação e efetuar a segurança dos pacotes, também remetem a desafios complexos, uma vez que não é tarefa simples, criar área de segurança de dados, principalmente se forem dinâmicas, monitorar comportamentos estranhos na rede, desafios difíceis de serem superados, frente aos roteadores e firewall atuais.

Agora com o advento do conceito da Indústria 4.0, que é a conexão de toda a cadeia produtiva na Internet, vemos novos padrões, protocolos e modelos de gestão de dados que elevam ainda mais as necessidades, que naturalmente não estavam previstas no modelo atual da Ethernet.

O modelo OSI de 7 camadas de rede e o TCP/IP, operam de forma fixa nas camadas um, dois e três, quando imaginamos uma necessidade de se criar algo novo em redes, temos que pensar na camada de aplicação, onde temos liberdade para criar, através de programação, novas formas de gestão de dados.

Para entender melhor o modelo existente, vamos relembrar como o switch e o roteador de dados funciona e como o conhecemos no modelo existente, o que ele faz:

  • Entender quando o pacote chega;
  • Ver na tabela de encaminhamento para onde vai (ou descartar);
  • Enviar pacote;
  • Atualizar a tabela;
  • Atualizar estatísticas;
  • Usa protocolos pré-definidos.

Perguntamos: Neste formato então, com o modelo ATUAL existente de Ethernet para Encaminhamento e Roteamento, é possível CRIAR controles, monitoramento e segurança de rede fora dos padrões atuais, com objetivo de atender NOVAS demandas, protocolos e novas ameaças de redes?

A resposta é: NÃO!

Para entender o caminho da solução, as redes SDN abrem novas possibilidades a entender:

  • Com o modelo ATUAL existente, somente sobra a CAMADA DE APLICAÇÃO para desenvolvimento, onde tenho possibilidade de criação;
  • Com este conceito de programar redes no nível de Aplicação, tem-se as SDN ou Redes Definidas por Software;
  • As redes virtuais (SDN) são um novo formato de gestão e comando de dados em uma rede, é uma quebra de paradigma e um novo mundo de possibilidades.

Para darmos alguns exemplos de cenários mais conhecidos na área de gestão de dados atualmente, frente aos novos desafios, podemos limitar nosso tema nas seguintes necessidades comuns, encontradas abaixo:

  • Fazer um projeto de redes Ethernet que permita a convergência de diversos setores (Indústria, TI e Logística), utilizando diversos protocolos e controlar as redes de uma central, bem como sua monitoração;
  • Criar um projeto de segurança de rede para controle de acesso, autenticação e monitoramento de regras, de forma dinâmica;
  • Escalar um projeto de rede para convergência de camadas de IoT (Internet das Coisas) e integrar nos sistemas de automação da planta, independente dos protocolos e com regras próprias.

A virtualização das redes, entra na mesma linha da virtualização dos computadores, vamos relembrar, de nossos textos anteriores:

Objetivo da virtualização de computadores: Processamento, armazenamento, compartilhamento e gestão;

Objetivo da virtualização de redes: Encaminhamento, roteamento, segurança e gestão.

Sendo que a duas soluções podem ser executadas On-Premisse (local) ou em Cloud Computing (computação nas nuvens).

A evolução dos sistemas de rede Ethernet, se baseia na gestão por camadas, esta é uma forma de entendermos o desenvolvimento tecnológico e o atendimento de suas demandas:

  • No início tínhamos apenas os concentradores de rede (HUB), que tinha apenas a função de conectar à rede no Layer 1, conexão física, não gerenciando dados em nenhuma instância;
  • Como os switches, temos a gestão das redes no Layer 2, também conhecido no nível de endereçamento físico (MAC), trabalhando com tabela de encaminhamento, cuja função principal, entre outras, é gerenciar pacotes e colisão de dados;
  • Com a união de redes de diferentes funções, localizações e diversos serviços, temos a gestão da rede no Layer 3, ou roteamento, nível IP, dado pelos roteadores de rede, onde podemos configurar rotas e permissões de dados, elevando o nível de controle da rede, com seus diversos protocolos roteamento.
  • A proposta da evolução, dado agora pelo Layer 4, é permitir a conexão de uma aplicação na camada de rede, diretamente na camada de transporte, utilizando-se API (Application Programming Interface), onde podemos montar tabela de encaminhamento, roteamento e regras próprias de segurança, fazendo todas as outras funções, porém com programação própria.

As redes SDN (Software Defined Networking) ou Redes Definidas por Software, é uma tecnologia que permite criar redes virtuais (Ethernet), utilizando-se de um hardware simplificado para encaminhamento de pacotes, conectados um sistema operacional de rede, conectados a API diretamente nos aplicativos de função da rede.

Como então funciona este modelo de gestão de dados no Layer 4? Como o switch ou roteador se comporta e o que faz na rede:

  • Entender quando o pacote chega;
  • Ver na tabela de encaminhamento para onde vai;
  • Enviar pacote (como deve ser tratado – programação);
  • Só acessa tabela de encaminhamento;
  • Usa API para conectar DEVICE na Tabela;
  • Atualiza tabela e estatísticas.

A tecnologia e o princípio de funcionamento das redes SDN, se dão por três elementos do conjunto, veja como é feito:

  • Utilizando Switches de Layer 4 para interface, faço todas conexões físicas;
  • Conecto os Switches em um Controlador SDN (sistema operacional da rede);
  • Programo as API (Application Programming Interface) de acordo com cada aplicação que tenho, criando as funções, regras e tabelas.

Para facilitar o entendimento do uso das redes SDN, descrevemos abaixo alguns termos muito utilizados com esta tecnologia:

  • SDN – Software Defined Networking – é o conceito de criação e gestão de redes de comunicação de forma virtual – conjunto de tecnologias;
  • NFV – Network Functions Virtualization – é a virtualização de funções de rede de forma a padronizar funções (comunicação, segurança ou regras);
  • SDWAN – Software-Defined Wide-Area Network – é a virtualização de conjuntos de serviços dentro de uma WAN, usando NFV, por exemplo, VPN, 4G;
  • OPENFLOW – é a tecnologia (protocolo) que permite aplicar de fato a SDN (sistema operacional de rede e as API);
  • ORQUESTRAÇÃO – é a gestão de um serviço de cloud de ponta a ponta, em nosso caso usar SDN no Cloud e orquestrando, por exemplo, com OpenStack;
  • OVERLAY – é uma rede sobreposta, conceito de criar uma rede (virtual) em cima de outra rede.

Como benefícios no uso das redes SDN, descrevemos abaixo suas principais características:

  • São redes de custos menores;
  • As redes SDN são flexíveis quanto ao projeto e implantação, testes simples;
  • Podem ter gestão centralizada ou distribuída no circuito de rede;
  • Por segurança, usa a negação por padrão, no envio de pacotes, o que não está programado, não é reconhecido;
  • Sistema de gestão de multiprotocolo, interoperável e com regras programáveis;
  • Facilidade de monitoração e gerenciamento da rede, conexões e fluxo de dados;
  • Facilidade de flexibilizar regras (permissões) de dados com geolocalização do Host;
  • Não se mistura arquiteturas convencionais de Ethernet com SDN;
  • O conceito já está preparado para uso em Cloud, criando ambientes híbridos, aderentes a Indústria 4.0.

As redes SDN se caracterizam por dois principais elementos básicos:

  • O Switch Layer 4, que utilizando o OpenFlow, conecta a tabela de encaminhamento da rede, através de API;
  • O controlador, que é o Sistema Operacional da rede e permite a programação da SDN.

Os sistemas SDN, permitem arquitetura centralizada e distribuída, dentro de uma rede única ou em modelos de sub-redes.

A implantação das redes SDN na automação industrial, segue o mesmo conceito e arquitetura conhecida e convencional, porém temos os switches e roteadores Layer 4 com OpenFlow, conectando fisicamente à rede e fazendo a conexão de API na tabela de encaminhamento e nesta rede, um controlador, em nosso exemplo estamos usando um centralizado, gerenciando e controlando toda a rede, inclusive conexões de IoT (Internet das Coisas), conceito da Indústria 4.0, conectados em Cloud.

No aspecto desenvolvimento tecnológico, podemos eleger algumas principais tendências na continuidade das redes virtuais:

  • Switches com programação direta das API e orquestração em Cloud;
  • Virtualização total dos controladores, principalmente em soluções Wireless (NaaS) Network as a Service;
  • Integração e convergência de dados (TO) Tecnologia da Operação, (TI) Tecnologia da Informação e (IoT) Internet das Coisas, usarem SDN para Flexibilização, Distribuição e Segurança de Dados.

Concluímos que as redes SDN são uma resposta aos grandes desafios de conectividade de comunicação na atualidade, vivemos o momento da virtualização do processamento, possibilitado escala que antes não era possível, com a virtualização das redes, rompe-se o limite tecnológico que estamos próximos, colocando as soluções de acordo com os patamares esperados pela Indústria 4.0, mudando sobremaneira a automação industrial como conhecemos hoje.

 

CANVAS NA AUTOMAÇÃO INDUSTRIAL

Ferramenta Ágil para Planejamento de Implantação de Sistemas de Automação Industrial

A importância de gerenciar projetos com eficiência é inquestionável, todavia, o que se vê, na maioria dos casos, é relegar gerenciamento a questões macro, onde alguém controla a implantação, ou quando muito, um departamento cuida disto na empresa, ficando muito distante da realidade do dia a dia de quem está em contato direto com os clientes e patrocinadores do projeto.

Até pouco tempo, vivemos um grande boom de certificações em gestão de projetos, PMI, PMBOK e assim por diante, com diversas questões de governança, tudo muito importante e de grande valor, mas aqui, vamos complementar a importância desta ação, no mundo da automação industrial, utilizando-se de ferramentas ágeis.

Como nossa experiência, gostaria de pontuar o perfil de projetos de automação na indústria, tanto em relação a novos projetos, quanto a ampliações ou melhorias, o que vemos é um despreparo, muitas vezes não intencional, mas de não entendimento da importância de gerenciar projetos de implantação com ferramentas mínimas.

Escrevemos um artigo sobre gerenciamento de projetos de automação industrial, seguindo as premissas do PMBOK, foi bastante comentado e acreditamos ter ajudado a entender e iniciar uma jornada neste mundo da administração de entregas, todavia, recebemos muitos comentários que a grande maioria de projetos de automação, principalmente em integradoras e departamentos específicos de automação nas empresas, são pequenos e complexos, com muitos envolvidos, muito dinâmicos e com muitas falhas em documentação, quando esta existe.

Desta forma, nossa proposta aqui, é apresentar uma ferramenta, um método complementar ao que já falamos, mas de grande valor, que é o CANVAS, ferramenta poderosa, simples de usar, com foco no planejamento, contribuindo sobremaneira, na condução e implantação de projetos de automação industrial, com as características citadas, gerando valor a todos os envolvidos.

Então, como são os projetos hoje de automação industrial? Vamos descrever as principais características, não limitadas a estas, mas que nos dê um escopo descritivo de nosso texto:

  • Em grandes obras a automação industrial é um item minimizado, ficando sempre para o fim;
  • Projetos de automação são dinâmicos e a grande maioria não tem informação para um bom planejamento;
  • Normalmente os Stakeholders (todos envolvidos no projeto) não participam do planejamento do projeto da automação, levando a consequências graves de cronograma, custo e qualidade.

Porque então usar o CANVAS na automação? Qual a contribuição desta ferramenta que iremos apresentar?

  • Ferramenta para departamento de engenharia e integradores com diversos projetos dinâmicos;
  • Caso use o PMBOK como diretriz, o CANVAS e excelente opção para Planejamento;
  • Mitigar e diminuir os riscos de implantação de sistemas pelo engajamento de todos envolvidos.

Entendendo então, as questões macro da automação industrial e as justificativas do uso desta ferramenta, vamos falar neste texto sobre:

  • Focar em uma metodologia simples e eficaz para planejamento de projetos;
  • Entender como usar o CANVAS;
  • Engajar stakeholders no plano de projeto;
  • Como dinamizar a gestão de projetos de automação industrial.

Vamos entender o que é o CANVAS *:

  • Metodologia* de planejamento de projetos;
  • Baseado em Neurociência (simples e visual);
  • Baseado em Modelo Mental (intuitivo);
  • Quadro colaborativo (modelo A1 – download);
  • Uso de termos curtos (Post-It);
  • Quadro flexível, modificável, claro e conciso;
  • Ponto central da ideia, criação, discussão e solução;
  • É a base para Cronogramas, Planilhas, Contratos…
    • * Todos os créditos do Prof. José Finochio Junior no site http://pmcanvas.com.br / (idealizador do modelo).

Quais os benefícios do uso nesta metodologia:

  • Facilidade de todos participarem;
  • Rápido para coleta de informações;
  • Dados organizados e sequenciados;
  • Engajamento dos participantes.

Vamos entender as premissas básicas da ferramenta CANVAS, vamos apresentar o que é fundamental para uso.

  1. O CANVAS trabalha respondendo perguntas diretas:
    1. Por quê? Justificativas, objetivos e benefícios;
    2. O que? Produto e requisitos;
    3. Quem? Stakeholders e equipe;
    4. Como? Premissas, grupo de entregas e restrições;
    5. Quando e quanto? Riscos, linha do tempo e custos.
  1. O CANVAS é composto de 13 quadros para serem preenchidos:
    1. GP Gerente do Projeto;
    2. PITCH Nome do Projeto;
    3. JUSTIFICATIVAS – o motivo do projeto;
    4. OBJETIVO SMART – o que te levará a solução com o projeto;
    5. BENEFÍCIOS – os benefícios do projeto;
    6. PRODUTO – o que é o projeto;
    7. REQUISITOS – o que é necessário para executar o projeto;
    8. STAKEHOLDERS – envolvidos no projeto e fatores externos;
    9. EQUIPE – todos os profissionais envolvidos que farão entregas;
    10. PREMISSAS – cenários problema, sem controle de gerente de projetos;
    11. GRUPO DE ENTREGAS – conjuntos de entregas do projeto pela equipe;
    12. RESTRIÇÕES – limitações reais do projeto;
    13. RISCOS – o que pode dar errado;
    14. LINHA DO TEMPO – cronograma macro baseado nas entregas;
    15. CUSTOS – quanto irá custar o projeto total.
  1. O CANVAS deve ser preenchido pela equipe, utilizando-se dos Post It, e seguindo uma sequência, a mesma apresentada no item anterior, sendo o fluxo de trabalho ou Workflow.
  1. O método de trabalho com o CANVAS é dividido em quatro partes:
    1. Conceber – a definição dos 13 passos (veja o exemplo na apresentação e no vídeo);
    2. Integrar – agrupar blocos e verificar coerências – passos (veja o exemplo na apresentação e no vídeo)
    3. Resolver – balancear o projeto, discutir problemas de limitações com todos (o que fazer):
      1. Não se resolve na hora – é lição para stakeholders;
      2. Deve identificar cenários de estrangulamento;
      3. Problemas de benefício;
      4. Problemas de requisitos;
      5. Problemas de entrega;
      6. Resolver juntos (equipe);
      7. Trazer soluções e cenários (plano B).
    4. Compartilhar – comunicar a todos os detalhes do projeto (o que):
      1. Mensagem de definição – porque o projeto existe;
      2. O que o projeto produz que atende ao cliente;
      3. Quem está no projeto e fornece recursos;
      4. Qual trabalho será feito, requisitos, premissas;
      5. Quais os riscos e incertezas;
      6. Qual a programação e custos do projeto.

Existem alguns pensamentos errados a respeito do CANVAS e sua aplicação como ferramenta, vejam os principais:

  • Pensar que é para projetos pequenos;
  • Eu faço sozinho;
  • Para que fazer no Post It se posso fazer direto no computador;
  • O espaço do CANVAS é pequeno para detalhar;
  • O CANVAS substitui documentação.

Concluímos que melhorar a eficiência na implantação de projetos de automação e diminuir os riscos de contratação, é fundamental para obter retorno sobre os investimentos e atendendo a todas as expectativas dos envolvidos.

EMPREGO TECNOLÓGICO

O Futuro do Emprego na Indústria 4.0

O Homem como ser social, acostumou-se a pronunciar palavras como revolução, mudança, impactos e tantas outras, principalmente no que se refere ao futuro, faz parte da natureza social humana.

Quando pensamos em desemprego, o termo toma um aspecto de grande importância, visto estar ligado diretamente a aspectos econômicos de qualquer região ou país, demandando ações políticas, que são esperadas, portanto, muitas vezes, sem efetividade, por diversas razões, mas a questão tecnológica quase sempre, foge ao controle de diretrizes políticas, que por tendência são reativas, apenas aguardando o próximo impacto econômico.

Isso sempre aconteceu ao longo da sociedade industrial, na pós primeira revolução, grandes mudanças no cenário das relações de emprego, desde a automatização do semáforos que ocorreu em Nova Iorque em 1992, desempregando 5500 policiais de trânsito, até nos dias atuais, onde tratores agrícolas já não tem motoristas, são autônomos, controlados por tecnológicas, desde visão artificial até comandos via GPS.

O mundo está em crise, não que seja uma grande novidade, pois é natural as mudanças para saltos sociais, econômico e políticos em todas as épocas da humanidade, a crise da atualidade, é o fim de um modelo que não atende mais a sociedade, porém, com ausência de um modelo que pudesse substituir a uma nova ordem, há um hiato de necessidade e atendimento social, que será solucionado somente com o tempo.

No final da década de 60 e início de 70, foram proclamados por diversos meios, desde acadêmicos até nos cinemas, cenários em que após o ano 2000 (muito distante na época), viveríamos entre robôs, estas previsões estavam corretas, se não fosse a forma, não temos robôs físicos, (salvo modelos industrias), convivendo conosco, todavia o robô de hoje é a Inteligência Artificial, que estão em todos os sistemas, deste redes sociais, sistemas de compra on-line, receita federal, previsão de tempo, bolsa de valores, gestão bancária, veículos autônomos, mostrando o quão já vivemos junto a estes “robôs” lógicos.

A evolução tecnológica na linha do tempo, proporciona através da sua adoção, uma redução de custos, fazendo o uso ser popular, exemplo disto, robôs industriais em 2007 custavam US$ 550.000 e em 2014, custam US$ 20.000, também os celulares em 2007, custavam US$ 499 e em 2005 US$10, em processamento e custo (similar), isso permite a massificação tecnológica, mudando o formato nas relações da sociedade, seguramente, abrindo uma fronteira para uma nova revolução tecnológica, a 4ª que estamos vivendo.

A tecnológica impulsiona o PIB, de acordo com um estudo da Accenture, países que adotam tecnologias de ponta, podem incrementar 0,9 pontos percentuais em seus PIB até o ano de 2035, gerando uma nova onda de empregos e uma nova ordem econômica, a despeito de que a automação desemprega, o mundo pós industrial, nunca contratou tanto, todavia o perfil do empregado é que muda ao longo do tempo.

Com a internet, hoje conectada na indústria, com processos colaborativos, fazendo toda a cadeia produtiva se comunicar dentro de um ecossistema cibernético, temos a pavimentação da 4ª revolução industrial, onde o maior impacto social, será a alteração das estruturas de tempo e erro, como conhecemos hoje, tudo será em tempo real, podendo haver o controle no ponto ocorrido, inclusive por prognósticos inteligentes e mudando o que entendemos por erros, uma vez que a tendência é que não haja mais a correção, uma vez que os sistema atuam de forma interconectada, organizada e interoperável, a isso estamos chamando de Indústria 4.0.

Tecnologias tais como, internet das coisas, big data, computação nas nuvens, drones, aprendizado de máquina, inteligência artificial, gêmeos digitais, virtualização, realidade aumentada e tantas outras, permeiam a Indústria 4.0, que ainda está em transição, mas o movimento é sem volta, impactando nas econômicas globais, alterando sobremaneira a forma de produzir e consumir bens e serviços.

Quando pensamos em impactos práticos na indústria, as funções de gestão sofrerão uma grande mudança que será o fim dos meios, isto é, o declínio da gestão intermediaria para tomada de decisões, uma vez que “a máquina” consolidará e tomará as decisões, na pior das hipóteses, entregará ao dirigente todos os cenários já pré formatados, no campo das operações, a figura do operador não tomará mais ações no processo, ele supervisionará, na melhor das hipóteses, eliminando erros, antecipando tempos e eliminando etapas de verificação da qualidade, com perfil produtivo de customização e personalização, nunca antes vistos, e, na manutenção, temos o prognóstico como maior ferramenta e impacto nas ações frente aos ativos, uma vez que os equipamentos cada vez mais são inteligentes e através de inteligência artificial, haverá a interferência somente quando a máquina solicitar, quando não, o próprio sistema poderá interagir.

Como estes cenários tecnológicos, descortinando uma Sociedade 4.0, o que então é o desemprego tecnológico? Podemos conceituar abaixo uma breve definição:

  • Substituição de mão de obra por máquinas ou sistemas;
  • Substituição de operação intelectual conhecida por máquinas ou sistemas;
  • Dispensa de trabalhado por novos modelos e padrões que evoluíram ou não existiam.

As máquinas estão aprendendo, isso já está acontecendo desde a adoção em massa da internet e agora, aplicada a indústria, ocorre que temos visto isso com mais impactos, mas já é de tempos, que há uma substituição do conhecimento humano (do que já se sabe), sendo executado por sistemas inteligentes.

Tarefas conhecidas, repetitivas, tendem a ser executadas por máquinas, por exemplo, motoristas, operadores de caixa, contadores, operadores industriais, médicos de atendimento, professores de conteúdo, jornalistas, atendimento comercial intermediário, sendo que estas informações sobre profissões que tendem a desaparecer, foram expostas no Fórum Econômico Mundial 2016 em Davos.

Profissões que requeiram criação, abstração, desenvolvimento, que tenham que lidar com situações novas e serviços para pessoas, tendem a ser as mais crescentes e mudarão o perfil do trabalhador do século XXI, tais como, engenharias, ciência de dados, computação, matemática, gestão estratégica, vendas, nesta mesma linha, também estes dados foram apresentados no Fórum Econômico Mundial 2016 em Davos, importante saber, que é esperado, que estas profissões ser correlacionarão como nunca antes visto, sobreviverão profissionais com formações específicas, mas que tenha habilidades em lidar com ciência de dados e alto grau de abstração numérica, ademais, o ser humano como prestador de serviços ganhará espaço em um mercado crescente, isso formará uma nova base de trabalhadores.

A solução para o desemprego tecnológico, amplamente discutido no Fórum Econômico Mundial 2017, ainda com a preocupação dos mesmos temas, uma vez que é uma revolução e não simplesmente uma mudança local ou regional, os líderes mundiais sabem o que é básico em qualquer econômica, a educação é a solução.

A solução está nas pessoas, afinal a tecnologia foi criada por elas e para elas, então esta tecnologia tem que servir a estas mesmas pessoas, deve haver um preparo tecnológico na base educacional, também a questão de servir as pessoas, um novo perfil, muito mais expandido de lidar com atendimentos de toda ordem para serviços, enfim, entender como será viver em um mundo pós 4ª revolução industrial, está tão conflitante e tenso, quanto foi nos pós sociedade da 1ª revolução industrial.

A indústria será muito diferente, ainda somos uma sociedade industrial, mas a rigor vemos que a indústria empregará cada vez menos com toda esta revolução tecnológica, é muito provável que o futuro do emprego não estará nas indústrias, não seremos mais uma sociedade industrial, mas sim, uma sociedade de serviços.

Os governos e lideranças, precisariam repensar de forma ativa e não reativa a tantas mudanças, haveremos de ter um novo formato de consumo, não mais de aquisição, mais de uso, isso deve mudar toda a cadeia econômica, o que existe, já está dando sinais de fadiga, governos e líderes de primeiro mundo, já estão repensando uma nova ordem, ou pelo mesmos estão buscando exercitar estes novos modelos, o poder econômico deve “ver” a base da pirâmide, para que esta população possa consumir estes novos serviços e que a tecnologia possa ser promovida em massa, distribuindo mais qualidade de vida, sem concentração extremada de renda, com foco na qualidade de vida e trabalho social para todos.

Neste futuro que se descortina, o poder das nações estará na Inteligência, não mais no conhecimento, com isso, devemos buscar a forma de como vamos lidar com toda esta tecnologia, que já está aí e gerar valor e poder competir num mundo cada vez mais com ciclos menores de economia, frente a volatilidade que a própria tecnologia provoca.

Por fim, esperamos que a tecnologia trabalhe para o Homem, que o Homem sirva na sociedade ao seu semelhante de forma mais equitativa e que a riqueza sirva o Homem em seus interesses reais de uma vida mais feliz, sem demagogia, mas talvez estejamos frente a uma grade oportunidade de um mundo melhor.

PROTOCOLO I-O LINK – TECNOLOGIA E APLICAÇÕES

Redes Industriais IO-Link – Suas Principais Características e Funcionamento

Rede moderna, alta velocidade e alto poder de informações no nível de dispositivo sensor, esta é a rede I-O Link, uma rede industrial nova no mercado, mas que já se desponta com uma opção para soluções aderentes a Indústria 4.0, uma vez que fornece grande quantidade de informações dos sensores/atuadores para os controladores.

A busca por implantação rápida de automação e facilidade de diagnóstico, dão o tom dos projetos de digitalização, o protocolo I-O Link permite fácil instalação e partida rápida no sistema.

Entenda nesta apresentação o princípio básico de funcionamento desta rede, servido de referência para estudos aprofundados de aplicações nas mais diversas aplicações, além ter uma visão geral da capacidade técnica para rede.

PROTOCOLO ASI BUS – TECNOLOGIA E APLICAÇÕES

Conhecendo a Rede Industrial ASI Bus – Suas Principais Características e Aplicações

As redes industriais ASI Bus são destacadas pela sua facilidade e flexibilidade na instalação, um protocolo robusto e com uma grama de acessórios para automação no nível sensor de campo.

Seu protocolo permite comunicação com sinais digitais e analógicos, com sensores próprios e módulos que conectam sinais convencionais de campo, além de poder trabalhar no perfil Safety Bus e dispositivos especiais com protocolo incorporado.

Em automação de máquinas e processo, que necessitam de velocidade e rapidez, com dispositivos simplificados de sinais, mas que necessitem de poder de diagnóstico rápido e facilidade de partida, o protocolo ASI Bus é uma ótima opção.

Esperamos com este material, contribuir de forma básica e direta para o conhecimento do funcionamento deste tipo de rede, servido de referência para aprofundamento de estudos e aplicação em projetos.

PROTOCOLO PROFIBUS – TECNOLOGIA E BOAS PRÁTICAS

Conhecendo a Tecnologia da Rede Industrial PROFIBUS – Suas Principais Características e Dicas de Instalação

As redes industrias Profibus são consolidadas no mercado de automação industrial, mostramos nesta apresentação suas principais características técnicas, tanto no perfil Profibus DP, quanto no perfil Profibus PA.

Com característica de rede robusta e, atendendo grande parte do nível vertical de automação, graças a capacidade de comunicação e gateways de mercado, propicia uma automação de alta performance para máquinas e processos industriais.

Mostramos também, a questão da importância da instalação, onde através de boas práticas, pode-se conseguir alto grau de disponibilidade, justificando investimentos, tanto em acessórios, quanto em equipamentos de análise de grandezas elétricas e do protocolo, afim de manter a rede em funcionamento, mesmo sob condições adversas de ambiente industrial.

Nossa contribuição é para o entendimento básico do protocolo, com dois guias anexo, onde você pode baixar documentos oficiais da Associação Profibus, servindo de referência para bons projetos e boas instalações.

O Protocolo Profibus se mostra com vida longa em qualquer aplicação industrial, pois além da base instalada no mundo, a continuidade de desenvolvimento de equipamentos de automação que conversam neste protocolo, continuam em desenvolvimento.

INDÚSTRIA 4.0 – PROJETO E IMPLANTAÇÃO

Diretrizes de Projeto e Implantação da Digitalização da Produção de Acordo com a Indústria 4.0

Neste texto vamos falar sobre a implantação de projetos de Automação Industrial aderentes a Indústria 4.0, importante saber que, não estamos querendo postular um modelo, mas sim, apresentar uma proposta, um singelo roteiro de visões sobre as tecnologias que se encontram disponíveis e principalmente, o que poderia ser exequível nas plantas existentes.

Para se chegar a uma planta digital, nos moldes da proposta da Indústria 4.0, utilizando todas as tecnologias existentes, é necessário percorrer um caminho inicial, pois sem um preparo, não poderemos implantar as tecnologias propostas no contexto da indústria digital, são os seguintes passos abaixo que propomos:

  • Passo 1 – Entenda o conceito da Indústria 4.0 e seus impactos;
  • Passo 2 – Analise a automação existente em sua planta;
  • Passo 3 – Otimize o processo existente;
  • Passo 4 – Faça a convergência de dados de sua cadeia produtiva;
  • Passo 5 – Implante as ferramentas da Indústria 4.0 (redesenhe seus processos).

Para delimitar nosso tema a respeito de projeto e implantação da Indústria 4.0, vamos entender:

  • Como repensar um ambiente de produção com ferramentas digitais;
  • Como obter vantagem no negócio com um modelo de tecnologia baseado na Indústria 4.0;
  • Como usar as tecnologias atuais e integrar a planta de produção no negócio digital.

Quando se entende a necessidade de buscar modelos de implantação da planta digital, normalmente temos alguns cenários conhecidos:

  • Tenho uma produção e necessito colocar o nível de produção aderente a Indústria 4.0;
  • Quais ferramentas já posso utilizar e qual a utilidade no novo modelo de produção digital;
  • Como alterar uma cultura de produção para um novo modelo, desde planejamento até operação.

O modelo produtivo evoluiu ao longo do tempo, alterando o perfil da produção, que no início, só se tinha a visão da planta local e seu processo unitário, com a automação e redes de informação, passamos a conectar o planejamento e gestão na produção, tendo um contexto maior da planta, mas ainda limitado ao processo local, com a Indústria 4.0 e as redes convergentes, o modelo produtivo, passa a ser o próprio modelo de negócios, uma vez que a conexão é de toda cadeia produtiva que orbita no ecossistema da empresa.

Para trilhar a implantação da Indústria 4.0 nos processos produtivos, temos alguns desafios que são comuns para uma análise:

  • Como atualizar uma planta produtiva existente de acordo com um modelo da Indústria 4.0;
  • Como gerar valor no negócio a partir de um novo modelo de planejamento e gestão produtivo;
  • Como incorporar novas tecnologias de produção e planejamento, com objetivo de aumentar receita e diminuir custos.

Um projeto de automação que tenha as premissas da Indústria 4.0, deve se encaixar nos quadrantes da tecnologia, que propomos a observar:

  • Conhecimento da Plata (informação);
  • Produtividade (eficiência produtiva);
  • Decisões (diagnósticos e prognósticos);
  • Novos formatos (oportunidades de negócio);

A automação industrial dos projetos atuais, devem ter as seguintes diretrizes abaixo, uma vez que estes sistemas devem dar as respostas a indústria digital:

  • Permitir novas formas de fazer negócios;
  • Eliminar ao máximo o desperdício e o erro;
  • Permitir customização e personalização da produção.

As principais características da Indústria 4.0 é ser colaborativa, preditiva e inteligente, para isso, sua arquitetura de produção deve ser, interoperável, flexível e descentralizada, com impactos diretos na escala produtiva, mão de obra e tomada de decisões.

Para os projetos de automação industrial, devemos utilizar as tecnologias da Indústria 4.0, talvez uma mais aderente que a outra, a depender do processo produtivo a que se refere, porém é bom listar as principais:

  • Redes de comunicação
  • Cibersegurança
  • IOT internet industrial
  • Cloud Computing
  • Big Data
  • Mineração de dados
  • Aprendizado de máquina
  • Virtualização (digitalização)
  • Realidade aumentada
  • Gêmeos digitais
  • SOA
  • OPC-UA
  • RFID
  • Produção por adição
  • Drones
  • Robôs

Como dever ser a planta da Indústria 4.0 e o que deve ser levado em consideração no contexto de projeto e implantação:

  • A planta deve ser interoperável – todo sistema se comunica;
  • Deve permitir virtualização – do planejamento a manutenção;
  • Deve ser flexível, modular e descentralizada;
  • Utilizar banco de dados em formato Big Data e em Cloud;
  • Utilizar modelos decisórios baseado em análise de dados;
  • Estar estruturada com sistemas de Cibersegurança.

A questão da interconexão, deve levar em consideração particularidades de cada setor, sistema, departamento, ou fornecedores, internos ou externos, que participem do processo produtivo e, devem ser observados que cada agente deste, deve estar conectado a um sistema de Cloud, que permita produzir informações de forma a unir no ecossistema, e o Big Data, absorverá todas estas informações, permitindo modelagem de dados para tomada de decisões.

A Indústria 4.0, em processos dinâmicos, que necessitem de customização em massa, devem ter sistemas de automação descentralizados, que controle células locais e respondam a processos centrais, sendo um arranjo de automação altamente flexível, que permita interconexão e mudanças rápidas na produção, além de sistema de segurança que monitore todo o processo em rede.

Na utilização das tecnologias, as principais diretrizes que temos que ver, no que se refere a aplicação, devemos levar em consideração de forma prática:

  • Conectar todas as informações (automação, IoT, IIoT, banco de dados);
  • Usar Cloud e Big Data para centralizar e analisar dados;
  • Usar mineração de dados para eliminar decisões intermediárias, focando o gestor;
  • Usar aprendizado de máquina para operar o sistema, fazendo do operador um supervisor de processo;
  • Usar predição (analisador de causas), criando prognóstico em produção e manutenção.

As tecnologias da Indústria 4.0, permeiam uma grade de projetos, todavia não necessariamente usaremos todos os elementos, ou pelo menos, devemos entender o que são rotas de dados para o usuário, por exemplo, o dado iniciando pelo processo, pode seguir uma rota de cibersegurança e IoT diretamente para a operação, não necessariamente sendo analisado no Big Data, deve-se construir as rotas de acordo com cada processo.

Abaixo sugerimos a observação das principais diretrizes para projetos de sistemas para Indústria 4.0:

  • Instrumentação e medição

Use redes Ethernet e redes Wireless – adote protocolos industriais baseado em Ethernet e integre o IoT Industrial;

  • Controle

Descentralize o máximo o controle, isso dará flexibilidade da produção, use microcontroles e controladores centrais de comunicando e conecte no Cloud;

  • Infraestrutura

Use ferramentas de virtualização, cloud computing e gestão do sistema via outsourcing;

  • Operação

Use dispositivos móveis, crie aplicativos de alta integração, evolua no uso do deep learning para apoio da operação;

  • Manutenção

Use modelos de manutenção baseado em eventos, conecte dados no cloud e use prognósticos de ativos e acesso remoto;

  • Gestão da Produção

Conecte os dados da produção, conecte ativos pela IoT e sistemas pela IIoT, use o Big Data;

  • Apoio a tomada de decisões

Conecte os dados da cadeia de produção no Big Data e use ferramentas de Mineração de Dados e Machine Learning.

Utilize serviços de Cloud Computing, onde estas plataformas são utilizadas e pagas como serviços, tais como, IBM BlueMix, Google Cloud Platform, Microsoft Azure, Amazon AWS, com as principais características:

  • Armazenagem de dados;
  • Máquinas virtuais;
  • Processamento sob demanda;
  • Segurança de dados;
  • Mineração de dados;
  • Aprendizagem de máquina;

Crie uma estrutura de conectividade, que permita que os dados internos de produção trafeguem pelas redes, use gateways e servidores OPC, use sistemas de roteamento de dados para conexão ao Cloud, crie modelos de gestão, manutenção, planejamento e automação, dentro do ecossistema.

Elabore uma arquitetura de automação que contemple todos os agentes produtivos da indústria, pense no negócio como um todo e como ele se relaciona, conecte todas as tecnologias disponíveis e crie os webservices, para que seja produzido e consumido informações dentro desta arquitetura.

A implantação de um modelo de Indústria 4.0 é uma mudança cultural de produção, é a própria fábrica digital para um novo modelo industrial, necessitando de liderança transformativa na indústria, sendo liderada por uma geração digital de profissionais que entenda o valor da mudança, liderada pelo CEO, líderes da transformação e composta por equipes também líderes e polivalentes, seguindo os principais passos como sugestão de implantação:

  • Passo 1 – Aplique Lean Manufactoring e indicadores de gestão e eficiência OEE;
  • Passo 2 – Identifique na produção o processo de maior integração – faça um piloto;
  • Passo 3 – Defina sua capacidade produtiva – crie modelos de tomada de decisões (Big Data);
  • Passo 4 – Aplique convergência e Machine Learning – elimine operações no processo;
  • Passo 5 – Escale o processo – integre setores – replique o modelo.

Passamos abaixo, alguns pontos importantes para serem observados na implantação:

  • Análise do status atual de automação (dados) de planta;
  • Análise do status atual de operação, manutenção e planejamento;
  • Identificação de pontos, operação e ações de otimização (ativos de planta, ponto de operação e segurança operacional);
  • Desenho da convergência de dados e informações da planta (infraestrutura);
  • Análise e projeto do sistema de cibersegurança (TO e TI)
  • Projeto de digitalização – complemento de IOT e dados externos (PCP, MES,MOM) – modelo de tomada de decisões;
  • Redesenho:
    • Tomada de decisões na gestão da planta;
    • Ações de controle ótimo;
    • Prognósticos de manutenção.
  • Treinamento

Relacionamos abaixo os principais benefícios esperados com a implantação de um roteiro para preparar a planta para a Indústria 4.0:

  • Iniciar a jornada pela Indústria 4.0 e se adequar ao futuro da Manufatura e Processos;
  • Obter novas oportunidades de conectar a fábrica aos consumidores e processos de inovação;
  • Gerenciar receita e custos, baseado em status de tempo real e prognósticos de cenários;
  • Diminuir tempo de tomada de decisões, diminuir erros de operação e integrar planejamento e qualidade da produção em tempo real;
  • Aumento de portfólio de oportunidades de negócios, com uma fábrica flexível, integrada e descentralizada.

Concluímos que projeto e implantação da Indústria 4.0, ainda estão no início de uma curva de maturidade, ainda que já haja tecnologia disponível, todavia, a questão é “saber” unir todos os pontos (universo cibernético) e mudar uma cultura de produção, de forma a obter vantagens competitivas em um mundo altamente digital e dinâmico.