Arquivo da categoria: Redes Industriais

REDES TSN NA AUTOMAÇÃO INDUSTRIAL

Redes Ethernet de Tempo Real – A TSN – Time-Sensitive Networking na Indústria

A evolução nas conexões de dados industriais, é foco de nosso texto, grandes esforços e investimentos dos departamentos de pesquisa e desenvolvimento tecnológico estão criando novos padrões, equipamentos e softwares, permitindo pavimentar o caminho da Indústria 4.0.

Disponibilizamos três textos correlacionados, onde mostramos as novas tecnologias, o OPC-UA (OPC UA – Unified Architecture) , o TSN (Time-Sensitive Network) e o FDI (Field Device Integration), formando os novos padrões da conectividade industrial.

A transformação digital permitirá uma indústria mais inteligente, portanto mais eficiente, barata e segura, para que isso ocorra, a automação industrial tem grande papel nesta transformação, onde a Indústria 3.0, baseada na Pirâmide da Automação, se transforma nos Pilares da Automação, uma vez que Convergência, Padronização e Velocidade de dados, possibilitará que a Indústria 4.0 se torne uma realidade, rompendo as barreiras de interface, que hoje existem no modelo atual da indústria.

Para entender as redes TSN, vamos falar de:

  • Evolução das Redes Ethernet;
  • As limitações das Redes Ethernet;
  • Ethernet em Tempo Real e com Priorização;
  • Padronizando a comunicação em Ethernet;
  • As demandas na Indústria 4.0.

Para entender os principais pontos da evolução das redes Ethernet, em seu conceito principal, ela trabalha com modelo de colisão de dados (CSMA-CD), não sendo determinística, em seu primórdio, era uma rede lenta, mas atendia a sua realidade e foi a aposta certa na tecnologia.

Baseado no mesmo modelo apresentado, as redes Ethernet se tornaram muito rápidas, 100M, 1G, 10G e são controladas por Switches configuráveis, controlando todo o tráfego de rede, apesar de ainda trabalhar no conceito (CSMA-CA), a questão determinística foi superada pela velocidade e controle da rede.

Mas novas questões, tais como, IoT (Internet das Coisas), que remetem a milhares de dispositivos conectados a um único Backbone de dados, priorização de mensagens críticas, unificação da interface de troca da informação, foram necessidades que levaram ao advento das redes TSN.

Em linhas gerais, os desafios e indagações que permearam esta tecnologia, foram:

  • Como fazer convergência de dados no nível de TO + TI + IoT com alta largura de banda, alta velocidade?
  • Como ter a certeza dos tempos de sincronização e priorização de mensagens dentro da Rede Ethernet (determinismo)?
  • Como manter a base padrão Ethernet e incorporar protocolos de alto desempenho industrial e de IoT?

Surgem as Redes TSN – Time-Sensitive Networking ou Redes Sensíveis ao Tempo, que:

  • São um conjunto de padrões do IEEE 802 elaborados para aprimorar a Rede Ethernet;
  • Seu objetivo é ter o controle da Latência da Rede permitindo uma Rede Determinística e Unificada;
  • O padrão permite a incorporação de Protocolos (OPC-UA, IEC61850, Profinet…) e é compatível com o padrão existente.

As principais características das Redes TSN:

  • Permite convergência de Dados (TO+TI+IIoT) em único padrão;
  • Rede muito rápida (microssegundos);
  • Possui alta largura de banca de dados (backbone);
  • Permite uso do padrão existente (legado);
  • Controla o tempo de latência de dados na rede (sincronização);
  • Controle de prioridades de dados e seu comportamento;
  • Incorpora protocolos existentes industriais e de IoT;
  • Permite ser um padrão único do sensor no campo ao Cloud;
  • Permitir virtualização de redes.

Principais benefícios no uso das Redes TSN:

  • Alta velocidade;
  • Baixa latência;
  • Tempo real;
  • Determinística (aplicação crítica);
  • Flexibilidade;
  • Alta disponibilidade;
  • Dado horizontal e vertical (único);
  • Segura.

As arquiteturas das Redes TSN, seguem o mesmo modelo das Redes Ethernet convencionais, lembrando que os equipamentos devem suportar esta tecnologia e a rede deve ser configurada para as funções específicas do novo padrão, principalmente os tempos, além de comunicações em Cloud.

Quanto ao princípio de funcionamento da rede, podemos destacar as suas operações:

  1. Sincronização de tempo (tempo real) – toda a rede tem o mesmo tempo (configurável);
  2. Agendamento e modelo de tráfego (regras – únicas e priorização);
  3. Seleção de caminhos de comunicação (configuração e alternativas);
  4. Reserva de trajeto (“vê” outro caminho);
  5. Tolerância a falhas (faz mais de um caminho).

Um dos pontos de destaques e principal recurso, que transforma a rede em determinística, é a função Time-Aware Scheduler, onde os pacotes de dados trafegam normalmente pelo sistema e quando há uma prioridade de dados (crítico), os pacotes comuns param e o pacote prioritário passa pelo sistema, isso permite comunicação crítica e baseado no tempo.

As redes TSN suportam diversos protocolos e cada vez mais estarão incorporados outros, gostaria de destacar o uso do Profinet, do próprio OPC-UA, do Ethernet/IP e o IEC 61850.

As redes TSN são preparadas para segurança de dados, são baseadas em Ethernet convencional, com as premissas conhecidas:

  • Utiliza o modelo de camadas;
  • No nível de dispositivo usa-se OPC-UA, permitindo:
    • Autenticação
    • Criptografia
    • Bloqueio (proteção)
  • Gerenciamento de fluxo de dados;
  • O determinismo não altera os modelos de segurança.

Nas aplicações das redes TSN o mais importante hoje é fazer um projeto com dispositivos que suportem o modelo, é uma tendência de grande crescimento em equipamentos que já se comunicam com o padrão Ethernet, podemos dizer que é quase um caminho natural, com isso sistemas de gerenciamento, roteamento e chaveamento da rede (Switch e Router), também suportarão o novo modelo.

As redes TSN com OPC-UA são uma grande tendência, pois:

  • Os fabricantes de equipamentos já estão incorporando juntamente com o OPC-UA o canal TSN nos dispositivos;
  • Temos os benefícios dos padrões OPC-UA e os ganhos em velocidade e performance de rede com o TSN;
  • A união destas duas tecnologias é uma realidade da convergência Tecnológica.

Quanto a aplicação e uso na Indústria 4.0, as redes TSN permitem e facilitam a:

  • Digitalização das Coisas (IoT);
  • Convergência da Cadeia de Valor (IIoT);
  • Uso de Cloud Computing;
  • Alta velocidade e Padronização.

Quanto a evolução natural do novo padrão, podemos destacar como tendência:

  • Equipamentos e dispositivos virem com recursos de comunicação nativa (OPC-UA + TSN);
  • As redes TSN podem se tornar o padrão Ethernet para todos os níveis de informação, inclusive de TI;
  • Recursos incorporados, tais como, SDN, IPV6 e Wireless, serão comuns nos dispositivos de automação.

Concluímos que a tecnologia das redes TSN são uma resposta às novas demandas da Indústria 4.0, convergência de dados com alta velocidade e alta disponibilidade, comunicação com integridade bidirecional, simplicidade do Backbone ao sinal de IoT, uma nova realidade nos ambientes de controle industrial.

OPC-UA NA AUTOMAÇÃO INDUSTRIAL

O Padrão de Comunicação para Interconexão e Convergência de Dados na Indústria

A evolução nas conexões de dados industriais, é foco de nosso texto, grandes esforços e investimentos dos departamentos de pesquisa e desenvolvimento tecnológico estão criando novos padrões, equipamentos e softwares, permitindo pavimentar o caminho da Indústria 4.0.

Disponibilizamos três textos correlacionados, onde mostramos as novas tecnologias, o OPC-UA (OPC UA – Unified Architecture) , o TSN (Time-Sensitive Network) e o FDI (Field Device Integration), formando os novos padrões da conectividade industrial.

A transformação digital permitirá uma indústria mais inteligente, portanto mais eficiente, barata e segura, para que isso ocorra, a automação industrial tem grande papel nesta transformação, onde a Indústria 3.0, baseada na Pirâmide da Automação, se transforma nos Pilares da Automação, uma vez que Convergência, Padronização e Velocidade de dados, possibilitará que a Indústria 4.0 se torne uma realidade, rompendo as barreiras de interface, que hoje existem no modelo atual da indústria.

Em nosso texto de OPC-UA, vamos falar sobre:

  • Comunicação de Dados na Indústria;
  • Padronização de Tecnologias;
  • Evolução da Conectividade;
  • Conectividade para Indústria 4.0.

Para entender como chegamos ao OPC-UA, que é a tecnologia mais moderna hoje na padronização de comunicação, precisamos entender que para se fazer uma comunicação de dados digitais, antes de meados de 1990, eram necessários “drives” proprietários, isto é, cada fabricante desenvolvia o seu, com suas particularidades e características.

Com o advento do Windows da Microsoft, e a adoção desta plataforma na automação industrial, surge a tecnologia OPC (Clássica), onde através de um modelo de coleta de dados padronizados, utilizando os recursos do próprio sistema operacional, podemos comunicar entre sistemas e hardwares industriais, portanto, as limitações e novas demandas, levaram ao desenvolvimento do OPC-UA, onde vamos entender um pouco melhor.

Antes, vamos entender o que é o OPC – OLE for Process Controle, é um conjunto de padrões de comunicação de dados para indústria que se utiliza do OLE – Object Linking and Embedding, tecnologia da Microsoft (Windows), que permite a conexão entre objetos de dados, utilizando-se da interface COM/DCOM – Distributed Component Object Model, também do Windows, permitindo troca de dados entre aplicativos e dispositivos, por exemplo, um PLC e um sistema SCADA conectado com um OPC.

O OPC Clássico possui três especificações, DA – Data Access, para troca de dados em tempo real, o A&E – Alarm and Events, dados e mensagens de eventos de estados e HDA – Historical Data Access, dados para análise histórica de eventos.

O OPC Clássico, se mostrou limitado para alguns desafios do seu tempo, os principais abaixo:

  • Problemas frequentes de configuração com o DCOM;
  • Não há timeouts configuráveis;
  • Apenas Microsoft Windows;
  • Segurança muito simples;
  • Nenhum controle sobre DCOM.

Então, surge o OPC UA – Open Platform Communications – Unified Architecture (Plataforma Aberta de Comunicação – Arquitetura Unificada – nova terminologia), sendo um padrão aberto de comunicação de dados industriais, e ao contrário do OPC Classic, o OPC UA utiliza um modelo de informação orientado a objetos, que suporta estruturas, objetos, máquinas de estado, base legada, além de ser independe de sistema operacional (Windows), onde este:

  • Suporta arquitetura orientada a serviços (SOA) que permite a fácil personalização do OPC UA, para diversos tipos de dispositivos e aplicativos;
  • O OPC UA possibilita a troca de dados brutos e informações pré-processadas entre os sistemas incorporados nos sensores e nos dispositivos de campo e os sistemas de ERP, MES e de visualização de processos (IHM);
  • Possui segurança Robusta de dados.

As principais características do OPC-UA, são listadas abaixo:

  • Para trocar dados, o OPC UA usa um protocolo binário otimizado baseado em TCP. Basta abrir uma única porta no firewall;
  • Os usuários podem combinar livremente os diferentes recursos de segurança de acordo com suas necessidades específicas, para que possam criar soluções escaláveis;
  • OPC UA utiliza uma arquitetura robusta com mecanismos de comunicação confiáveis, monitoramento de tempo configurável e detecção automática de falhas;
  • Os mecanismos de correção de falha restabelecem automaticamente o link de comunicação entre o OPC UA Client e o OPC UA Server sem perda de dados;
  • O OPC UA fornece funcionalidade de redundância que pode ser integrada a aplicações Client e Server a fim de proporcionar alta disponibilidade do sistema e máxima confiabilidade;
  • O OPC-UA permite ainda, como recursos adicionais, redundância de conexão, monitoramento da conexão (interrupções) e buffer de dados e confirmação, conexões perdidas não levam a perda de dados.

Quanto aos principais benefícios do uso do OPC-UA, temos:

  • Fácil e rápida instalação e partida;
  • Implementação multiplataforma, incluindo implementações portáveis ANSI C , Java e .NET;
  • Escalabilidade: de sensores inteligentes e atuadores e dentro de equipamentos;
  • Operação multithread (múltiplas Threads – tarefas), bem como single-threaded / single-task – necessária comunicação de dispositivos embarcados IoT;
  • Segurança, baseada em novos padrões;
  • Tempos limite configuráveis para cada serviço;
  • Chunking (organizar dados em pacotes menores) de grandes datagramas;
  • A arquitetura OPC UA é uma arquitetura orientada a serviços (SOA).

Podemos montar diversos arranjos de arquitetura de conexão com o OPC-UA, lembrando que seu conceito de comunicação básico é baseado em cliente-servidor, logo podemos ter, conexão de um sistema com um hardware, conexão de um ou mais hardwares, com diversos sistemas, como um Scada e um banco de dados, como cliente OPC e até mesmo, externar dados para Cloud, onde o OPC-UA, suporta estes tipos de conexão via Internet.

Quanto ao funcionamento, o OPC-UA, tem as seguintes principais características:

A comunicação OPC-UA suporta dois formatos, UA Binário e XML, o remetente codifica os dados para o formato relevante e o receptor deve ser capaz de decodificar o conteúdo (com todas premissas de integridade e segurança) de forma a reconstruir o dado original.

Formato UA Binário

O formato UA Binário é um conjunto de dados seriados em formato de array (conjunto ou estrutura de dados) de bytes, este é um método simples e de baixo custo, normalmente aplicado no nível de dispositivo, é de processamento limitado, mas de alta prioridade, deve ser interpretado somente por clientes compatíveis com OPC-UA.

Formato XML – Extensible Markup Language

O formato XML é uma linguagem de dados de marcação, isso facilita a interpretação por parte de diversos dispositivos, independe da plataforma e pode-se utilizar-se de esquemas de SOA.

Este formato normalmente está aplicado no nível mais alto de comunicação da planta e suporta clientes genéricos de XML (impressora, por exemplo), como codificar e decodificar XML é mais caro, normalmente esta solução se aplicação no nível de informação e gestão.

O OPC UA suporta dois protocolos de comunicação, o OPC/TCP e o SOA/HTTP(S):

Protocolo OPC/TCP – OLE for Process Control / Transmission Control Protocol

Este protocolo de baseia no TCP para transporte do dado, permitindo um canal full-dulplex entre o Server e o Client, no modelo Socket (soquete), o canal se comunica com pacotes Binários, permitindo canal seguro (soquete seguro), somente clientes OPC são capazes de receber informações de OPC-TCP.

Protocolo SOAP/HTTP (S) – Simple Object Access Protocol / Hypertext Transfer Protocol (Secure)

Este protocolo trabalha com mensagens estruturadas no modelo SOAP (XML), que são transmitidas via HTTP(S), normalmente são chamados de envelopes de mensagem. Estas mensagens são conjuntos de dados que são utilizados no nível de informação entre diversos tipos dispositivos que suportam XML, podendo trabalhar com modo seguro, criptografia e certificados digitais.

O OPC-UA utiliza as tecnologias SSL –  Secure Sockets Layer, TLS – Transport Layer Security e AES – Advanced Encrypton Standard, que permitindo os seguintes controles de segurança:

  • Proteção contra o acesso não autorizado, modificações de valores de processo, sabotagem e falhas causadas por uso negligente;
  • Os recursos de segurança são uma parte obrigatória do padrão e incluem autenticação de usuário e de aplicativo, assinaturas digitais de mensagem e criptografia de dados transmitidos;
  • A troca de dados entre dispositivos OPC-UA é segura, com controle de confidencialidade, integridade e autenticação;
  • Os mecanismos de dados de transporte de OPC-UA são acessíveis por Firewall e Internet, permitindo controles de acesso local e via Internet;

A nova tecnologia PUBLISHER / SUBSCRIBER:

A estrutura de aplicação do OPC-UA é baseada em Cliente-Servidor, este tipo de aplicação não é o modelo ideal quando consideramos soluções para IoT – Internet das Coisas aderente a Indústria 4.0, com isso, surge a solução baseada em Publisher / Subscriber, onde o “publicador” emite os dados para seus “inscritos” e os inscritos também podem enviar dados para o publicado, este conceito permite redes digitais de alta densidade, velocidade e performance.

Quanto as aplicações do OPC-UA, tanto em soluções quanto em descrições de produto, são importantes definir as entradas de dados e seus respectivos protocolos, definir as saídas da mesma forma, orientada as aplicações dos sistemas que vão “consumir” estes dados, inclusive com foco com Cloud, se for o caso, com os protocolos exigidos para tal, exemplo, MQTT.

Softwares de OPC-UA, normalmente são chamados se Suites, pois permitem uma série de funções adicionais, tais como, troca de dados entre protocolos e equipamentos diferentes, acesso a base de dados, tunelamento de dados, entre outros.

O OPC-UA tem total aderências as demandas da Indústria 4.0, podemos destacar alguns pontos:

  • Suporta convergência de padrões e unifica o conector (Protocolo) de saída;
  • Suporta MQTT Message Queuing Telemetry Transport e AMQP Advanced Message Queuing Protocol;
  • Permite comunicação direta em Cloud Computing (Azure, AWS, Google, MindSphere – Siemens…).

Como continuidade do desenvolvimento tecnológico, podemos descrever algumas tendências, baseado em indicares reais de desenvolvimento técnico em curso:

  • OPC-UA incorporado em qualquer dispositivo (coisa) IoT;
  • OPC-UA trabalhar com TSN – Time-Sensitive Networking;
  • OPC-UA conectar dispositivos de campo, independente de protocolos FDI – Field Device Integration.

Concluímos que a evolução da digitalização e a realidade da Indústria 4.0, passam por desafios técnicos de comunicação de dados de toda a cadeia de valor, as novas soluções devem permitir convergência, padronização e velocidade, o OPC-UA é uma proposta concreta e já aplicável.

REDES SDN NA AUTOMAÇÃO INDUSTRIAL

Aplicação das Redes Definidas por Software nos Sistemas Industriais (SDN Software Defined Networking)

As redes Ethernet permitiram conectar o mundo, num primeiro momento entre computadores, depois com a Internet como a conhecemos e agora com a IoT Internet das Coisas.

Os desafios frente as demandas deste padrão, consolidado no mundo, não param de permear área de pesquisa e desenvolvimento na área de comunicações de dados, pois desde o seu advento, nunca estivemos tão perto do seu limite tecnológico.

Quando pensamos em encaminhar pacotes de dados e roteamento entre redes, os padrões das conhecidas camadas 2 e camada 3 do modelo OSI (Open Systems Interconnect), já se definiram com seus modelos e protocolos, não conseguimos com estes padrões existentes, criar novos formados de controle de dados (exclusivos ou especiais).

Nesta mesma linha, gerenciar a rede de comunicação e efetuar a segurança dos pacotes, também remetem a desafios complexos, uma vez que não é tarefa simples, criar área de segurança de dados, principalmente se forem dinâmicas, monitorar comportamentos estranhos na rede, desafios difíceis de serem superados, frente aos roteadores e firewall atuais.

Agora com o advento do conceito da Indústria 4.0, que é a conexão de toda a cadeia produtiva na Internet, vemos novos padrões, protocolos e modelos de gestão de dados que elevam ainda mais as necessidades, que naturalmente não estavam previstas no modelo atual da Ethernet.

O modelo OSI de 7 camadas de rede e o TCP/IP, operam de forma fixa nas camadas um, dois e três, quando imaginamos uma necessidade de se criar algo novo em redes, temos que pensar na camada de aplicação, onde temos liberdade para criar, através de programação, novas formas de gestão de dados.

Para entender melhor o modelo existente, vamos relembrar como o switch e o roteador de dados funciona e como o conhecemos no modelo existente, o que ele faz:

  • Entender quando o pacote chega;
  • Ver na tabela de encaminhamento para onde vai (ou descartar);
  • Enviar pacote;
  • Atualizar a tabela;
  • Atualizar estatísticas;
  • Usa protocolos pré-definidos.

Perguntamos: Neste formato então, com o modelo ATUAL existente de Ethernet para Encaminhamento e Roteamento, é possível CRIAR controles, monitoramento e segurança de rede fora dos padrões atuais, com objetivo de atender NOVAS demandas, protocolos e novas ameaças de redes?

A resposta é: NÃO!

Para entender o caminho da solução, as redes SDN abrem novas possibilidades a entender:

  • Com o modelo ATUAL existente, somente sobra a CAMADA DE APLICAÇÃO para desenvolvimento, onde tenho possibilidade de criação;
  • Com este conceito de programar redes no nível de Aplicação, tem-se as SDN ou Redes Definidas por Software;
  • As redes virtuais (SDN) são um novo formato de gestão e comando de dados em uma rede, é uma quebra de paradigma e um novo mundo de possibilidades.

Para darmos alguns exemplos de cenários mais conhecidos na área de gestão de dados atualmente, frente aos novos desafios, podemos limitar nosso tema nas seguintes necessidades comuns, encontradas abaixo:

  • Fazer um projeto de redes Ethernet que permita a convergência de diversos setores (Indústria, TI e Logística), utilizando diversos protocolos e controlar as redes de uma central, bem como sua monitoração;
  • Criar um projeto de segurança de rede para controle de acesso, autenticação e monitoramento de regras, de forma dinâmica;
  • Escalar um projeto de rede para convergência de camadas de IoT (Internet das Coisas) e integrar nos sistemas de automação da planta, independente dos protocolos e com regras próprias.

A virtualização das redes, entra na mesma linha da virtualização dos computadores, vamos relembrar, de nossos textos anteriores:

Objetivo da virtualização de computadores: Processamento, armazenamento, compartilhamento e gestão;

Objetivo da virtualização de redes: Encaminhamento, roteamento, segurança e gestão.

Sendo que a duas soluções podem ser executadas On-Premisse (local) ou em Cloud Computing (computação nas nuvens).

A evolução dos sistemas de rede Ethernet, se baseia na gestão por camadas, esta é uma forma de entendermos o desenvolvimento tecnológico e o atendimento de suas demandas:

  • No início tínhamos apenas os concentradores de rede (HUB), que tinha apenas a função de conectar à rede no Layer 1, conexão física, não gerenciando dados em nenhuma instância;
  • Como os switches, temos a gestão das redes no Layer 2, também conhecido no nível de endereçamento físico (MAC), trabalhando com tabela de encaminhamento, cuja função principal, entre outras, é gerenciar pacotes e colisão de dados;
  • Com a união de redes de diferentes funções, localizações e diversos serviços, temos a gestão da rede no Layer 3, ou roteamento, nível IP, dado pelos roteadores de rede, onde podemos configurar rotas e permissões de dados, elevando o nível de controle da rede, com seus diversos protocolos roteamento.
  • A proposta da evolução, dado agora pelo Layer 4, é permitir a conexão de uma aplicação na camada de rede, diretamente na camada de transporte, utilizando-se API (Application Programming Interface), onde podemos montar tabela de encaminhamento, roteamento e regras próprias de segurança, fazendo todas as outras funções, porém com programação própria.

As redes SDN (Software Defined Networking) ou Redes Definidas por Software, é uma tecnologia que permite criar redes virtuais (Ethernet), utilizando-se de um hardware simplificado para encaminhamento de pacotes, conectados um sistema operacional de rede, conectados a API diretamente nos aplicativos de função da rede.

Como então funciona este modelo de gestão de dados no Layer 4? Como o switch ou roteador se comporta e o que faz na rede:

  • Entender quando o pacote chega;
  • Ver na tabela de encaminhamento para onde vai;
  • Enviar pacote (como deve ser tratado – programação);
  • Só acessa tabela de encaminhamento;
  • Usa API para conectar DEVICE na Tabela;
  • Atualiza tabela e estatísticas.

A tecnologia e o princípio de funcionamento das redes SDN, se dão por três elementos do conjunto, veja como é feito:

  • Utilizando Switches de Layer 4 para interface, faço todas conexões físicas;
  • Conecto os Switches em um Controlador SDN (sistema operacional da rede);
  • Programo as API (Application Programming Interface) de acordo com cada aplicação que tenho, criando as funções, regras e tabelas.

Para facilitar o entendimento do uso das redes SDN, descrevemos abaixo alguns termos muito utilizados com esta tecnologia:

  • SDN – Software Defined Networking – é o conceito de criação e gestão de redes de comunicação de forma virtual – conjunto de tecnologias;
  • NFV – Network Functions Virtualization – é a virtualização de funções de rede de forma a padronizar funções (comunicação, segurança ou regras);
  • SDWAN – Software-Defined Wide-Area Network – é a virtualização de conjuntos de serviços dentro de uma WAN, usando NFV, por exemplo, VPN, 4G;
  • OPENFLOW – é a tecnologia (protocolo) que permite aplicar de fato a SDN (sistema operacional de rede e as API);
  • ORQUESTRAÇÃO – é a gestão de um serviço de cloud de ponta a ponta, em nosso caso usar SDN no Cloud e orquestrando, por exemplo, com OpenStack;
  • OVERLAY – é uma rede sobreposta, conceito de criar uma rede (virtual) em cima de outra rede.

Como benefícios no uso das redes SDN, descrevemos abaixo suas principais características:

  • São redes de custos menores;
  • As redes SDN são flexíveis quanto ao projeto e implantação, testes simples;
  • Podem ter gestão centralizada ou distribuída no circuito de rede;
  • Por segurança, usa a negação por padrão, no envio de pacotes, o que não está programado, não é reconhecido;
  • Sistema de gestão de multiprotocolo, interoperável e com regras programáveis;
  • Facilidade de monitoração e gerenciamento da rede, conexões e fluxo de dados;
  • Facilidade de flexibilizar regras (permissões) de dados com geolocalização do Host;
  • Não se mistura arquiteturas convencionais de Ethernet com SDN;
  • O conceito já está preparado para uso em Cloud, criando ambientes híbridos, aderentes a Indústria 4.0.

As redes SDN se caracterizam por dois principais elementos básicos:

  • O Switch Layer 4, que utilizando o OpenFlow, conecta a tabela de encaminhamento da rede, através de API;
  • O controlador, que é o Sistema Operacional da rede e permite a programação da SDN.

Os sistemas SDN, permitem arquitetura centralizada e distribuída, dentro de uma rede única ou em modelos de sub-redes.

A implantação das redes SDN na automação industrial, segue o mesmo conceito e arquitetura conhecida e convencional, porém temos os switches e roteadores Layer 4 com OpenFlow, conectando fisicamente à rede e fazendo a conexão de API na tabela de encaminhamento e nesta rede, um controlador, em nosso exemplo estamos usando um centralizado, gerenciando e controlando toda a rede, inclusive conexões de IoT (Internet das Coisas), conceito da Indústria 4.0, conectados em Cloud.

No aspecto desenvolvimento tecnológico, podemos eleger algumas principais tendências na continuidade das redes virtuais:

  • Switches com programação direta das API e orquestração em Cloud;
  • Virtualização total dos controladores, principalmente em soluções Wireless (NaaS) Network as a Service;
  • Integração e convergência de dados (TO) Tecnologia da Operação, (TI) Tecnologia da Informação e (IoT) Internet das Coisas, usarem SDN para Flexibilização, Distribuição e Segurança de Dados.

Concluímos que as redes SDN são uma resposta aos grandes desafios de conectividade de comunicação na atualidade, vivemos o momento da virtualização do processamento, possibilitado escala que antes não era possível, com a virtualização das redes, rompe-se o limite tecnológico que estamos próximos, colocando as soluções de acordo com os patamares esperados pela Indústria 4.0, mudando sobremaneira a automação industrial como conhecemos hoje.

 

IoT INTERNET DAS COISAS NA INDÚSTRIA 4.0

Digitalização de Dados de Dispositivos e Aplicações na Automação Industrial

A digitalização de dados de máquinas, processos e dispositivos, complementam a camada operacional de uma planta industrial, a tecnologia IoT Internet das Coisas, como é conhecida, é a técnica que permite conectar informações em geral de dispositivos na Internet (Cloud – Nuvem), isto possibilita, dentro da Indústria 4.0, a interconexão de dados e sistemas, permitindo formar o ecossistema cibernético, onde conseguimos obter a interoperação completa e total da planta industrial, onde podemos chamá-la de planta digital.

Vamos entender através de nossa analogia já estudada a questão das rodovias, como já construímos as vias (infraestrutura), colocamos sinalização e procedimentos de tráfego (cibersegurança), agora como permitir com que todos os elementos ao redor desta rodovia (cadeia produtiva), possa trocar informações entre si, criando um ambiente digital, impactando novos formatos de produção, desde o planejamento a logística, passando pela produção e qualidade, com isso, vamos falar sobre:

  • Como criar uma camada de digitalização do processo produtivo – IoT;
  • Como conectar a cadeia de fornecimento, complementando a interconexão da indústria – IIoT;
  • Quais ferramentas de gestão operam no nível de digitalização da produção.

Quando pensamos em digitalizar a produção industrial, termo este que é usado na camada da Indústria 4.0, temos diversos cenários, abaixo listamos alguns que ocorrem e merecem nossa atenção:

  • Em uma unidade produtiva, é necessário digitalizar os movimentos dos ativos para planejamento e controle da qualidade;
  • Para apoiar o setor de manutenção, a digitalização de todos elementos ativos, documentos e cenários, permitem o prognóstico de planta;
  • A interconexão de logística, fornecedores, suprimentos, agrícola na rede industrial, permite gestão em tempo real para produção.

Na evolução da informação digital das plantas produtivas, temos a época que na verdade o dado nem mesmo era digital, somente havia a informação e esta era analógica, depois houve a evolução dos dispositivo, mas continuava com o foco local, após esta fase, temos com as redes locais, a possibilidade de verticalizar dados, que são digitais, trocando informações do chão de fábrica, planejamento e administração com a TI, todavia, com foco apenas nos sistemas que permitiam esta função, mas a Indústria 4.0, necessita de uma outra camada, para que de fato tenhamos uma produção digital, desta forma, os ativos, sistemas e subsistemas da cadeia produtiva, devem complementar as informações de toda a unidade industrial, através da convergência de todas as redes.

Para digitalização de dados da indústria, temos diversos desafios, podemos eleger alguns comuns para que seja pensado na implantação da solução:

  • Como criar uma rede de informações complementar na produção que permita planejar e monitorar a produção e manutenção em tempo real;
  • Como conectar redes independentes, tais como, logística, fornecedores, laboratórios e unir nas redes industrias;
  • Como estabelecer padronização e segurança da informação nas redes de IoT na indústria.

O conceito da informação digital no contexto da Indústria 4.0, é que este dado, deve ser de todos os ativos e sistemas (todas as coisas), deve estar em qualquer lugar e permitir a conexão com esta informação a qualquer hora.

A IoT Internet das Coisas, surge como a ideia de conectar qualquer dispositivo que gere informações e possa se conectar a um serviço de cloud, isso pode estar em qualquer âmbito, casa, hospitalar, esportes, entre outros. A IIoT Internet Industrial das Coisas, foi a evolução das informações da cadeia produtiva, com o mesmo conceito de IoT, conectando estas informações via cloud, por exemplo.

É importante saber a diferença entre IoT e IIoT, sistemas que conectam coisas, complementam informações, normalmente somente produzem dados, pode ser usado em qualquer setor da indústria, por exemplo, para gerenciar ativos e analisar tendências de manutenção. A IIoT, forma uma camada crítica do processo produtivo, por exemplo, pode-se conectar diretamente um fornecedor de produto em tempo real na linha de produção, que analise a qualidade e uso de seu produto, outro exemplo, conectar a cadeia logística de entrada e saída de materiais e controlar a produção, em tempo real, no ponto ótimo de operação, isso passa a ser uma aplicação de produção e consumo de dados, com perfil crítico.

A utilização de IoT e IIoT, trazem benefícios as plantas produtivas, onde são esperados os seguintes ganhos abaixo:

  • Redução de operações ou paradas;
  • Melhoria do uso do ativo;
  • Redução de operações ou custo do ciclo do ativo;
  • Melhoria do uso do ativo – performance;
  • Melhoria da produção;
  • Aumento da rapidez na tomada de decisões;
  • Oportunidade para novos negócios;
  • Permitir venda ou compra de produtos como serviço.

A Indústria 4.0, propõe a fábrica digital, com isso, a premissa de se digitalizar todas as informações, pode levar a um questionamento sobre a razão e motivo de digitalizar tantos dados, que antes não estavam disponíveis em tempo real e agora, se fazem necessários, abaixo então, os motivos para se digitalizar estes dados através da IoT e IIoT:

  • Informação barata;
  • Transformar informação em inteligência;
  • Diminuir Expertise;
  • Diminuir risco de tomada de decisões;
  • Diminuição de operações;
  • Transparência de ações;
  • O executado é “aprendido”;
  • Eliminar o “meio”;
  • Eliminar erro e desperdício;
  • Ganho de tempo.

A camada de IoT e IIoT na indústria provocará um modelo de prognóstico, uma vez que a automação, que já existe, responde perguntas do que está acontecendo, o que aconteceu e porque aconteceu, mas esta camada digital, responderá perguntas tais como, o que irá acontecer, e, isso mudará a forma de operar e manter uma planta industrial.

Se as informações estão todas digitalizadas e há todos os meios (redes) para que trafeguem e troquem informações entre si, é esperado que se possa haver tomada de decisões não só entre operadores e máquinas, mas também entre máquina e máquina, isto chamamos de M2M, Machine to Machine.

Um item muito importante que deve ser levado em consideração para a digitalização da produção, são os RFID, os Sistemas de Identificação por Rádio Frequência, que em linhas gerais, permitem o rastreio total de todos elementos produtivos dentro da planta e fora dela, permitindo ações em tempo real (tempo e local), fazendo correções, agindo de forma antecipada e monitorando a qualidade no instante do movimento produtivo.

Com estas camadas digitais, construídas pela IoT e IIoT, podemos utilizar tecnologias de planejamento, qualidade e operação, de uma forma totalmente inovadora, a Virtualização é o planejamento produtivo totalmente digital, do projeto a produção, podendo trabalhar todos os cenários, mesmo antes da produção real acontecer. A Realidade Virtual a capacidade de trazer ao operador, planejador ou mantenedor, a informação da planta no local que ele está conseguindo ver e interagir no processo digital e recebendo a resposta no processo real, é a união máquina – homem.

As arquiteturas de sistemas de automação industrial, que tenham aderência a Indústria 4.0, devem prever, além das camadas já conhecidas do controle operacional e todo o arcabouço de controle, a camada de IoT e IIoT, onde vamos convergir todos estes dados em um Big Data, entregando possibilidades de controle operacional, com tomadas de decisões em formato de prognósticos e de com possibilidade de ações autônomas.

Sobre os protocolos que são usados, é importante saber que a IoT, como dissemos, normalmente somente produz dados e envia, o protocolo MQTT, é bem aceito para esta aplicação, todavia, para IIoT, é necessário unir dados críticos de ação em processo, com protocolos existentes, e na ponta, comunicando em OPC-UA, que é a tecnologia mais atual para atender as premissas da Indústria 4.0.

Os sistemas de IoT e IIoT, devem ser projetados e ter ferramentas de segurança de dados, com as seguintes camadas, que permitam trafegar do dado a informação dentro do sistema:

  • Dado;
  • Token (gerador randômico);
  • Zona de conexão;
  • Chave de acesso;
  • Encriptografia;
  • Autenticação;
  • Antivírus;
  • Firewall da rede.

Para implantar a camada digital de IoT e/ou IIoT na indústria, sugerimos as seguintes observações, que são comuns em projetos de digitalização para tomada de decisões:

  • Separar camada de automação (comando e controle) – tabela de informações;
  • Digitalizar sinais das “COISAS” para completar tabela de dados IoT;
  • Conectar outras redes (Gestão, Manutenção, Planejamento, Qualidade, Laboratório) tabela de dados;
  • Conectar mundo externo (Logística, Fornecedores, Clima…) IIoT;
  • Quais conjuntos de informações “formam” cenários para tomada de decisões?

Concluímos que a digitalização dos processos e toda a cadeia produtiva da indústria é a base da Indústria 4.0, com as camadas de IoT e IIoT é possível planejar, controlar e rastrear a produção, tanto por simulação digital, quanto por virtualização, ganhando tempo de tomada de decisões e redução de custos.

CIBERSEGURANÇA NA INDÚSTRIA 4.0

Segurança de Dados em Redes e em Sistemas de Automação Industrial

A TI Tecnologia da Informação já se acostumou a lidar diariamente com problemas de segurança de dados, porém, a automação, uma vez convergindo com a TI, passou a herdar também este problema, no mundo da TA Tecnologia da Automação, a questão da segurança de dados é relativamente novo, mas podemos afirmar que, a segurança da informação, em qualquer nível de automação, já é uma barreira a implantação e ao crescimento dos sistemas para a Indústria 4.0.

Em nosso texto anterior, explicamos o contexto da construção de rodovias para a interconexão da Indústria 4.0, agora imaginemos estas rodovias (as redes) e precisamos sinaliza-las, colocar regras de tráfego, normas e procedimentos, isso vamos chamar de cibersegurança.

Para delimitar nosso tema, vamos mostrar algumas questões referentes a cibersegurança na automação industrial e ir construindo um pensamento que nos leve a Indústria 4.0, segue o contexto do que vamos escrever:

  • A questão da segurança de dados no ambiente industrial digital;
  • As invasões em plantas industriais por hackers;
  • Medidas de proteção e contingência para infraestrutura da Indústria 4.0.

No ambiente industrial, no que se refere a segurança de dados, podemos ter inúmeros cenários de ataque, vamos comentar alguns comuns que precisamos entender:

  • É notório o crescimento das invasões a plantas industriais;
  • O crescimento de projetos de convergência com vistas a Indústria 4.0 desafiam a segurança de dados;
  • Desenvolver projetos simples e eficazes, além de procedimentos de implantação real.

No início da automação não havia problemas de roubo de dados em rede, uma vez que não havia a rede, no contexto da evolução, os dados eram apenas locais e nos dispositivos, com a evolução, passamos a ter as redes de TI e TA, no início separadas e agora em convergência, isso já preocupa sobremaneira os profissionais, principalmente de TI, que normalmente são responsáveis por esta área de segurança, uma novidade para a TA, mas quando pensamos em Indústria 4.0, devemos ver a integração total da planta, todos os setores e sistemas, além da conexão ao mundo externo, pela internet e serviços de cloud, abrindo brechas de segurança, que antes não existiam nas plantas industriais.

As preocupações e desafios para implantação de sistemas seguros são enormes, além de serem extremamente dinâmicos, mas podemos eleger se forma simplificada os principais pontos que devem ser observados, pensados e mitigados:

  • Como equilibrar o entendimento e aplicação prática de sistemas de segurança nas plantas industriais;
  • Como aplicar soluções inteligentes de segurança que escalem o processo de crescimento da planta;
  • Como monitorar e controlar invasões e rastrear ações na planta.

A questão da cibersegurança é um fato nas indústrias, mas existem algumas realidades que não são levadas em consideração, apesar de haverem ataques a plantas com sucesso, diariamente, abaixo alguns pontos desconfortantes em relação a isto:

  • Ninguém pensa que será “invadido”;
  • A segurança não é pensada no início do projeto;
  • A automação não converge com a TI na prática;
  • Não existe política de segurança na automação;
  • A consciência do problema ainda não existe;
  • Não existe respostas fáceis;
  • Você será invadido! Se já não estiver sendo…

As invasões a qualquer tipo de sistemas de informação ou dado, independente se for automação ou qualquer outro setor, tem motivações diversas, desde uma satisfação pessoal do hacker, até a parada intencional da planta, passando por espionagem industrial, roubo e venda de dados, chantagem, sequestro e bloqueio de informações, através de implantação de senhas.

As invasões a sistemas não ocorrem em âmbito somente de TI, como era comum até pouco tempo atrás como informação divulgada, na verdade, desde que a TA se convergiu com a TI, foram crescentes os casos de invasão a plantas, criação de vírus específicos para sabotagem, a exemplo do Stuxnet, entre outros. Estas invasões continuam acontecendo, gerando milhares de dólares de prejuízos e alto risco de segurança operacional em plantas de infraestrutura crítica.

Os ataques em plantas normalmente ocorrem por um modus operad (não único), mas comum, através de uma invasão de um pequeno programa, que pode ser instalado dentro do sistema (hospedeiro), de forma intencionada ou não, com um pendrive, por exemplo, ou um e-mail com anexo. Desta forma, uma vez instalado (executado), este “robô lógico”, trabalha dentro da rede para um hacker, que está externo, mas monitorando tudo e esperando o momento que lhe convém para atacar, roubando dados, trocando parâmetros de planta, entre outros.

As redes de comunicação no chão de fábrica, tem uma série de características de vulnerabilidades de segurança, podemos eleger abaixo algumas principais:

  • Protocolos de baixa capacidade de segurança;
  • Redes de controle sem segmentação;
  • Redes sem antivírus e sem atualização;
  • Sistemas operacionais sem atualização e brechas conhecida da TI;
  • As redes de automação não são criptografadas no nível IP;
  • Não existe LOG ativados nos sistemas de automação (rastreio);
  • Dificuldades de atualizar sistemas SCADA;
  • Não se configura segurança baseada em Host em sistemas SCADA;
  • Segurança física deve caminhar com segurança lógica.

A segurança da informação, dentro do contexto do acesso ao dado, deve ser entendida como uma cebola, imagine as camadas, o dado é o núcleo da cebola e deve-se passar pelas camadas até chegar a ele, desta forma, precisamos trabalhar acessos, físicos e lógicos em cada camada, liberando permissões ou bloqueando, dificultando ao máximo o acesso e que só seja permitido para quem tem todas as “chaves” até chegar a ele.

Um plano de segurança cibernética é algo complexo, com muitas técnicas, conhecimentos, ferramentas e procedimentos, todavia, abaixo listamos os principais pontos que devem ser observados e projetados para implantação da segurança na rede:

  • Bloquear acesso;
  • Monitorar serviços;
  • Corrigir ameaças;
  • Contingenciar falhas;
  • Auditar mudanças.

Para os primeiros passos de uma implantação de segurança mínima no chão de fábrica, podemos lista algumas ações básicas que devem ser consideradas de imediato:

  • Autenticação de usuários e equipamentos;
  • Controle de acesso – físico e lógico;
  • Detecção de intrusão – física e lógica;
  • Criptografia de dados;
  • Assinatura digital;
  • Isolamento e/ou segregação de ativos;
  • Varredura de vírus;
  • Monitoramento de atividade sistema/rede;
  • Segurança perimetral de planta.

Não existe um caminho único, há diversas medidas que devem ser tomadas e aqui não queremos colocar uma regra, mas é importante que:

  • Faça proteção física da planta e dos sistemas (crie política de segurança física de acesso a todo perímetro);
  • Integre políticas de segurança junto a TI, faça a convergência com ativos de automação;
  • Faça análise de riscos para identificar o grau de atuação de bloqueios de acesso.

Em relação aos bloqueios de acesso, devemos considerar que:

  • Dependendo do grau de risco, deve-se bloquear pessoas não permitidas, implantar rastreio, não permitir portas (pendrive ou algo do gênero);
  • Muito cuidado com terceiros, é necessário hoje repensar modelos de contratos com ferramentas externas, algo grau de vulnerabilidade;
  • Lembre-se, só você é responsável pela sua planta, as vezes um terceiro é portador de um vírus e não sabe.

Existem técnicas para se projetar a conectividade da rede de forma a torna-la mais segura, a ISA-99, que é uma norma para segurança de dados em redes, trata do termo Zonas de Segurança, onde podemos entender as mesmas da seguinte forma:

  • Para segurança lógica podemos implantar a técnica de Zonas de Segurança (ISA-99), que são agrupamentos físicos e lógicos que compartilham os mesmos requisitos de segurança;
  • Para interconectar Zonas de Segurança, implantamos um Conduíte, que funciona como uma ponte segura entre elas;
  • Um nível de segurança é definido de acordo com a criticidade e consequência de um ataque;
  • Caso necessite de acesso externo (ex. Cloud) é necessário criar uma DMZ Zona Desmilitarizada.

Para conhecer melhor sobre as normas de segurança, sugerimos a pesquisa e estudo das:

  • ISA-99
  • IEC-62443
  • IEC-17799
  • IEC-27002
  • IEC-27032

Para a implantação de sistemas de segurança na automação industrial, sugerimos o entendimento de alguns procedimentos básicos, tais como:

  • Analise riscos e crie cenários – tenha contramedidas e contingências;
  • Foque nas pessoas, sempre haverá erros e políticas de segurança nem sempre são seguidas;
  • Entenda que não há tecnologia 100% segura, foque nos procedimentos;
  • Teste o sistema, monitores, rastreie de ponta a ponta.

Concluímos que a cibersegurança é uma fronteira da Indústria 4.0, pois no contexto de dados em rede e Cloud, uma planta industrial fica exposta a invasões, com consequências que podem ser danosas, tanto para o negócio, quanto para a segurança operacional, daí a importância de colocar foco em segurança de redes em projetos de automação.

RÁDIOS NA AUTOMAÇÃO INDUSTRIAL

Como Aplicar Rádio Enlace em Sistemas de Aquisição de Dados e Controle Industrial

As necessidades na área de aquisição de dados e controle industrial não se limitam ao local do controlador ou de um operador de planta, as demandas da indústria desafiam, por exemplo, as distâncias.

Uma planta industrial, normalmente tem setores que podem operar a quilômetros de distância e em época de automação das informações e elevação de rendimento operacional, se faz necessário “trazer” estas informações para um local centralizado, ou utilizar controles da planta principal, todavia, um sistema de cabeamento seria inviável.

Os rádios de telecomunicação, para transmissão de dados no ambiente industrial, cada vez mais são aplicados, afim de atingir estes objetivos de ganhos operacionais e de segurança, atendendo os requisitos de um sistema de automação convencional, tais como, disponibilidade, integridade e segurança.

O objetivo deste texto é demonstrar de forma prática e direta a aplicação destes rádios na indústria, demonstrando elementos práticos e reais que são utilizados para especificar um sistema, lembrando que não há intenção de esgotar o assunto e muito menos de falar sobre telecomunicações, disciplina esta, fundamental, para entendimento pleno na aplicação destes projetos.

Para delimitar nosso tema, uma vez que há muita tecnologia e demanda envolvida neste contexto, vamos falar sobre:

  • Quais justificativas para utilização de RÁDIOS no Controle Operacional;
  • Quais benefícios que os RÁDIOS levam para o Controle Operacional junto com a Automação Industrial;
  • Quais tecnologias disponíveis e quais aplicações nos sistemas de Controle e Automação;

Nesta mesma linha, temos alguns cenários propostos para nosso campo demonstrativo no estudo:

  • É necessário estabelecer uma comunicação entre dois controladores a uma distância de 8Km entre eles, mas é inviável a utilização de mídia física;
  • Há um conjunto de dispositivos de comunicação móveis dentro de uma área limitada, como estabelecer uma comunicação entre eles;
  • Como intercomunicar diversos pontos em uma planta, com protocolos diferentes, com objetivo de aquisitar dados para uma sala de controle?

Os sistemas de telecomunicações estão em constante evolução, para datarmos alguns pontos importantes, podemos falar sobre Michael Faraday que, em 1831 descobriu a indução eletromagnética, iniciando os primeiros estudos nesta área.

A partir daí, temos Hertz, Marconi, Tesla, diversos cientistas que fizeram grandes descobertas neste campo, promovendo a revolução na área das telecomunicações, atentamos ao fato das tecnologias celulares 1G, 2G, 3G e 4G, relativamente novas em nossa área, mas que provocaram grande impacto em nossa sociedade e estamos no limiar de uma grande evolução, que é a tecnologia 5G, rompendo barreiras de velocidade, capacidade de comunicação e banda de interconexão para IoT Internet das Coisas.

Para aplicação de rádios de telecomunicações, alguns desafios seguem em nosso campo, onde podemos descrevê-los:

  • Como especificar a faixa de frequência de trabalho em função da distância e quantidade de dados;
  • Como calcular antenas, infraestrutura de repetição de forma a equalizar o projeto de atenuação do sinal;
  • Como aplicar boas práticas para diminuição de interferências e aumento de disponibilidade do rádio.

O conceito de funcionamento dos rádios se refere a um transmissor de sinal (onda eletromagnética) e um receptor, onde através de um arranjo de antenas, estas ondas se interceptam, convertendo sinais eletromagnéticos (campo) em sinais elétricos e vice-versa, sendo este o conceito de funcionamento.

Em tecnologia da telecomunicação, devemos entender o termo rádio propagação, pois este dá forma a capacidade de enviar e receber informações no espaço, sendo este termo:

  • A propagação de ondas eletromagnéticas no espaço terrestre;
  • Uso de Transmissor e Receptor com Modulação e Demodulação (MODEM);
  • Uso de Antenas para Ampliação de Sinais;
  • Capacidade de comunicação dependente da Distância e Link de Dados (device);

Os principais benefícios no uso de rádio, aplicados principalmente na automação industrial, podemos descrever abaixo:

  • Aplicações Especiais
  • Mobilidade
  • Alcance
  • Flexibilidade
  • Confiabilidade
  • Implantação Rápida
  • Custo de Manutenção
  • Imunidade a Ruído
  • Custo Projeto / Instalação (viabilidade)
  • Diagnóstico de Operação, Manutenção e Segurança

O funcionamento dos rádios eletromagnéticos, se deu pelo descobrimento de Hertz, físico alemão que em 1888, onde ele compreendeu a geração de ondas eletromagnéticas através a oscilação de um gerador de alta frequência.

As tecnologias e componentes que compõem basicamente um sistema de rádio são (lembrando que nosso foco são aplicações na automação industrial):

  • Rádio MODEM Transmissor / Receptor para Comunicação do Dados;
  • Antena para Amplificação e Direcionamento do Sinal e Link + acessórios;
  • Controladores ou Devices para Produção ou Consumo de Informações;

Um componente muito importante no sistema de rádio é a antena, que permite o direcionamento do sinal, bem como sua amplificação para transmissão e abertura da zona de recepção do sinal, abaixo alguns tipos de antenas:

  • ANTENA YAGIS
    • Fácil instalação
    • Normalmente instalada para ponto a ponto
    • Acima de 1,5 GHz
  • ANTENA SETORIAL
    • Enlace ponto a ponto e multiponto
    • O ganho depende do número de dipolos
    • Podem ser verticais ou horizontais
  • ANTENA PARÁBOLA
    • Antena (alimentador) ilumina o refletor
    • Ganho elevado
    • Usado em enlaces de grandes distâncias
  • ANTENA LOG-PERIÓDICA
    • Grande largura de banda
    • Ganhos menores que Yagis (comparadas)
    • Instalação vertical e horizontal
  • ANTENA OMNIDIRECIONAL
    • Irradiação uniforme no ângulo de uso
    • Vários dipolos instalados
    • Ganho varia de acordo com num dipolos e distância

Como objetivo de ser simples, não querendo ser simplista, pois como dissemos esta disciplina refere-se a Telecomunicações, muitas vezes não estudada na área de automação industrial, queremos dar uma noção de grandeza, para aplicações em nossa área.

Normalmente as aplicações de rádio dentro deste contexto, operam em faixa de frequência de 900 MHz, 2,4 GHz e 5GHz, sendo assim, na tabela da apresentação, demonstramos uma ordem de grandeza, totalmente teórica em termos de aplicação, podendo se expandir a depender do ambiente de aplicação e tecnologia empregada, mas é um bom referencial inicial.

O circuito de telecomunicação, composto basicamente de rádio, antena e acessórios, são elementos que influenciam a qualidade de sinal, podendo provocar perdas ou ganhos, lembrando que o ar, isto é, a distância entre as antenas, atenuam o sinal, a composição das somas e subtrações deste circuito, definem a capacidade de comunicação do sistema, veja no quadro o cálculo.

Para cálculos de implantação de sistemas de rádio, é de boa prática a aplicação de uma técnica chamada Site Survey, não é escopo deste texto explicar esta técnica, todavia, abaixo relacionamos os seus objetivos:

  • Analisar localização, distância, visada e frequências;
  • Definir quantidade de rádios base e repetidoras;
  • Especificar equipamentos de acordo com frequência e Throughput (taxa de Transferência);
  • Questões legais e de regulamentação ANATEL;
  • Plano de frequências;
  • Teste e validação do Enlace de Dados.

Também, para a implantação de um sistema de enlace de dados, mostramos alguns pontos básicos que devem ser levados em consideração, o material serve de referência para estudo em sequência, pois há muito material disponível na internet com detalhes de uso:

  • Definia sua necessidade (foco na distância e quantidade de dados de tráfego);
  • Faça um Site Survey teórico – para definir uma viabilidade básica (visada) use o Google Earth;
  • Analise opções (viabilidades) de mercado de Rádios, Antenas e Torres, se este for o caso;
  • Contrate um Site Survey profissional, faça o projeto de especificação e implantação;

É muito importante entender alguns itens, afim de complementar este estudo de referência:

  • A capacidade de distância do Link depende da frequência (quanto maior, menor a distância) e da quantidade de dados (quanto maior, menor a distância);
  • Os rádios têm potência de transmissão (dBm/mW) que atendem uma determinada velocidade e tem sensibilidade na recepção;
  • O que define o Enlace, é o cálculo gradual dos ganhos (antenas) e perdas (conexões e cabos).

Como dissemos, a área de telecomunicações está em franco desenvolvimento, abaixo relacionamos as principais tendências para os próximos anos:

  • Uso de Modens com VPN (Virtual Private Network) Segura (Cibersegurança);
  • Tecnologia – NB-IoT NarrowBand IoT – LTE Long Term Evolution;
  • Uso de Rádios como IaaS – (Infrasctruture as a Service).

Concluímos que os Links de Rádios permitiram a expansão do uso do comando e controle na automação industrial, viabilizando comunicação entre sistemas, obtendo ganhos de performance produtiva e segurança operacional.

REDES WI-FI NA AUTOMAÇÃO INDUSTRIAL

Aplicação das Redes Sem Fio no Chão-de-Fábrica (WIRELESS – Padrão IEEE 802.11)

Com o crescente uso da TI Tecnologia da Informação unida a TO Tecnologia da Operação, onde chamamos de Convergência Industrial, as Redes de Comunicação Sem Fio, também vem ganhando espaço no ambiente industrial de fábrica.

Usaremos o termo TO ao invés de TA Tecnologia da Automação, que é a própria evolução da tecnologia, que significa TO=TA+MES ou MOM, ou seja, é a união da Automação Industrial com a Gestão Industrial (Sistema de Gerenciamento de Produção ou Operação).

Todos nós conhecemos as Redes WI-FI normalmente em nosso dia-a-dia, em nossas casas, em um aeroporto ou shopping, onde conectamos nosso smartphone para acesso a serviços de internet, dado a facilidade de uso e grande padronização da comunicação em geral.

Com a popularização, padronização e novas demandas na indústria, a Rede WI-FI, passou também a ser aplicada no chão-de-fábrica, logo temos a intenção neste texto, ainda que de forma simples e rápida, passar uma visão geral de como esta tecnologia vem evoluindo, para isso vamos ver:
• O que é uma Rede WI-FI e sua Tecnologia;
• Como a Rede WI-FI está sendo Aplicada no Chão de Fábrica;
• Quais das Diretrizes para PROJETOS e IMPLANTAÇÃO de Redes WI-FI na Indústria.

Para delimitar nosso tema, vamos analisar esta tecnologia dentro de alguns cenários comuns de aplicação das Redes WI-FI:
• Preciso interconectar dispositivos de automação da fábrica para troca de informações e análise de dados;
• Como especificar equipamentos WI-FI para aplicações no Chão-de-Fábrica, o que devo saber;
• Como analisar os Protocolos, Segurança e Disponibilidade na Rede Industrial WI-FI.

Como dissemos as Redes Sem Fio é a própria evolução tecnológica do meio, agora sendo aplicados no chão-de-fábrica, principalmente quando pensamos na adoção das Redes Ethernet na Automação Industrial, também a evolução de protocolos industriais, desde o advento do sinal analógico 4-20mA.

As Redes WI-FI estão posicionadas no mundo das redes WLAN, que são as Wireless Local Area Network, estas redes são projetadas para pequenas áreas, algo em torno de 50 metros na unidade transmissora, fora os arranjos, com um bom tráfego de dados disponível no meio.

As Redes WI-FI são fáceis de usar, todavia é importante entender o que se justifica para sua aplicação, podemos abaixo eleger algumas características, que por si só encaixam as aplicações na fábrica:
• Interconexão Ethernet convencional (fiação) quando não é possível;
• Segregação de uma rede de comando e controle com uma de informação para gestão;
• Facilidade de manutenção e monitoramento (acesso remoto);
• Disponibilidade da informação em múltiplos locais;
• Baixo Investimento em Infraestrutura para informações de planta.

No uso das Redes WI-FI também temos diversos benefícios, podemos listar alguns principais abaixo:
• Baixo Custo;
• Aplicações Especiais;
• Mobilidade;
• Alcance;
• Flexibilidade;
• Confiabilidade;
• Implantação Rápida;
• Custo de Manutenção;
• Imunidade a Ruído;
• Custo Projeto / Instalação (viabilidade);
• Diagnóstico de Operação, Manutenção e Segurança.

Conhecendo estes elementos da rede, podemos então pontuar as principais características das Redes WI-FI, lembrando mais uma vez que nosso texto é voltado para aplicação na indústria:
• É uma Rede de Classificação WLAN (Local);
• WI-FI é Marca Registrada da Alliance;
• Está baseada no Padrão IEEE 802.11;
• Protocolos Industriais baseado em Ethernet são Aderentes a Tecnologia.

Por princípio de funcionamento da comunicação WI-FI, é através da propagação das ondas eletromagnéticas, há um arranjo eletrônico nos dispositivos, onde as informações são trocadas através das antenas dos equipamentos, por esta propagação eletromagnética, originada pela onda elétrica (movimento dos elétrons), trafegam informações devidamente codificadas e interpretadas entre os dispositivos, formando a rede de comunicação, através de seus protocolos e serviços.

A comunicação das redes WI-FI, é padronizada pelo IEEE 802, especificamente pela parte 11, que trata das redes LAN, redes Locais.

O padrão em evoluindo desde sua criação e é identificado por letras após a parte, por exemplo, IEEE 802.11a,b,g.

Normalmente os padrões identificam a frequências de trabalho, a modulação e a velocidade dos dados da tecnologia suportada, já temos cinco gerações de padrões e é constante a evolução, na apresentação mostramos os gráficos e tabelas, onde dispensam nossos comentários textuais.

Para conhecimento a respeito de aplicações industriais, normalmente os padrões de aplicação são (a,b,g,n), vamos descrever o que significa brevemente cada um:

IEEE 802.11a
• Foi definido após os padrões 802.11 e 802.11b.
• Chega a alcançar velocidades de 54 Mbps dentro dos padrões da IEEE e de 72 a 108 Mbps por fabricantes não padronizados.
• Esta rede opera na frequência de 5,8GHz e inicialmente suporta 64 utilizadores por Ponto de Acesso (PA) .
• As suas principais vantagens são a velocidade, a gratuidade da frequência que é usada e a ausência de interferências.
• A maior desvantagem é a incompatibilidade com os padrões no que diz respeito a Access Points 802.11 b e g, quanto a clientes, o padrão 802.11a é compatível tanto com 802.11b e 802.11g na maioria dos casos, já se tornando padrão na fabricação.

IEEE 802.11b
• Ele alcança uma taxa de transmissão de 11 Mbps padronizada pelo IEEE e uma velocidade de 22 Mbps, oferecida por alguns fabricantes.
• Opera na frequência de 2.4GHz. Inicialmente suporta 32 utilizadores por ponto de acesso.
• Um ponto negativo neste padrão é a alta interferência tanto na transmissão como na recepção de sinais, porque funcionam a 2,4GHz equivalentes aos telefones móveis, fornos micro ondas e dispositivo Bluetooth.
• O aspecto positivo é o baixo preço dos seus dispositivos, a largura de banda gratuita bem como a disponibilidade gratuita em todo mundo.
• O 802.11b é amplamente utilizados por provedores de internet sem fio.

IEEE 802.11g
• Baseado na compatibilidade com os dispositivos 802.11b e oferece uma velocidade de até 54 Mbps.
• Funciona dentro da frequência de 2,4GHz.
• Tem os mesmos inconvenientes do padrão 802.11b (incompatibilidades com dispositivos de diferentes fabricantes).
• As vantagens também são as velocidades.
• Usa autenticação WEP estática já aceitando outros tipos de autenticação como WPA (Wireless Protect Access) com criptografia (método de criptografia TKIP e AES).
• Torna-se por vezes difícil de configurar, como Home Gateway devido à sua frequência de rádio e outros sinais que podem interferir na transmissão da rede sem fio.

IEEE 802.11n
• O IEEE aprovou oficialmente a versão final do padrão para redes sem fio 802.11n.
• Vários produtos 802.11n foram lançados no mercado antes de o padrão IEEE 802.11n ser oficialmente lançado, e estes foram projetados com base em um rascunho (draft) deste padrão.
• Tiveram alterações significativas nas 2 camadas de rede (PHY e MAC), permitindo a este padrão chegar até os 600 Mbps, quando operando com 4 antenas no transmissor e no receptor, e utilizando a modulação 64-QAM (Quadrature Amplitude Modulation).
• As principais especificações técnicas do padrão 802.11n incluem: – Taxas de transferências disponíveis: de 65 Mbps a 450 Mbps.
• Método de transmissão: MIMO-OFDM – Faixa de frequência: 2,4GHz e/ou 5GHz.

Nas aplicações de Rede WI-FI alguns desafios devem ser entendidos para que possa ser mitigada em projetos, através de boas práticas a implantação de dispositivos e acessórios para uma perfeita comunicação, sendo os principais abaixo:
• Entender a propagação do sinal no ambiente;
• Que tipos de antenas utilizarem;
• Quais são os obstáculos no local;
• Onde será aplicação, ambiente interno e/ou externo;
• O que se espera da rede e seu desempenho (criticidade).

Podemos observar acima que se não forem dadas devidas atenções a questões de ambiente e obstáculos, a comunicação se tornará instável, sendo que a tecnologia que permite a MODULAÇÃO, das ondas magnéticas é crítica, quanto ao funcionamento do dispositivo WI-FI, esta mesma tecnologia também evoluiu e consta no catálogo de aplicações dos equipamentos.

Vamos mostrar abaixo as três principais tecnologias aplicadas para modulação de sinais.

FHSS – Espalhamento Espectral por Salto de Frequências
• Usa uma portadora de banda estreita única;
• Transmissor e recepto usam canal único para se conectarem;
• Mudam (saltam) a frequência entre si (400ms);
• A comunicação é vista por um invasor como um ruído, dificultando a leitura;
• Utiliza toda a banda, perde-se velocidade de transmissão.

DSSS – Espalhamento Espectral com Sequenciamento Direto
• Espalha a informação ao longo de sua faixa de frequência;
• Usa codificação e decodificação (chipping code), uma função XOR de resultado 0= entrada iguais e 1= entradas diferentes;
• Suporta taxa de dados variados;
• Resistentes da multi-rotas e interferências;
• Muito sensível a sinais de ruído;
• Número limitado de acesso a um mesmo canal.

OFDM – Multiplexação por Divisão de Frequência
• Divide o sinal em diversas sub portadoras, cada um possui um trecho de informação;
• Utiliza largura de banda maior que as outras;
• Usa multiplexação por divisão de frequência;
• Elevada eficiência do espectro do campo de comunicação;
• Imunidade contra multi-rotas e filtragem de ruído simples;
• Dificuldade de sincronismo das portadoras e sensibilidade a desvios de frequência.

A tecnologia Dual Band é a capacidade dos dispositivos WI-FI trabalharem em frequências distintas, por exemplo, a comunicação está operando em 2,4 GHz, porém começa-se a identificar perda da qualidade do sinal, então o sistema passa a operar, por exemplo, em 5 Ghz, com isso pode-se continuar a comunicação com a mesma qualidade, pode ocorrer o inverso.

Dispositivos que operam em 5 GHz normalmente são Dual Band automáticos.
Os dispositivos que operam em 2,4 GHz operam com 3 canais, enquanto os que operam em 5GHz operam com 23 canais em sobreposição. As frequências de 2,4 GHz chegam com o sinal mais longe, obtendo melhor cobertura.

Quais as principais diferenças do WI-FI convencional do Industrial?

Abaixo listamos o que realmente é importante, uma vez que a tecnologia da comunicação é a mesma, todavia aplicações no campo requerem características de equipamentos diferenciados:
• Aplicação em Ambientes Severos (Hardware);
• Temperatura 75º C a -35º C (exemplo);
• Proteção Mecânica Especial;
• IP (Grau de Proteção Alto);
• Suportar Vibração e Impacto;
• Alta Imunidade a Ruídos (EMI);
• Arranjos de Alta Disponibilidade (Redundâncias);

Os equipamentos que estabelecem comunicação no ambiente WI-FI são chamados de AP Access Point, eles tem características de configuração e serviços que permitem uma série de arranjos e funcionalidades.

Abaixo listamos as principais, sugerimos que vejam o vídeo e a apresentação, pois facilitará o entendimento, uma vez que seria desnecessário descrever em texto, onde o vídeo facilita o entendimento.
• AP – Access Point – Ponto do Acesso ao WI-FI;
• Roteador – Conecta o Ambiente Wireless a Serviços (Ex. Internet);
• AP Client – Ponto que Recebe o WI-FI e converte em Cabo RJ;
• Gateway – Distribui em Sinais Secundários – Diversos Pontos WI-FI
• Repeter – É um repetidor da rede WI-FI, amplificando o Sinal;
• Bridge – é uma Ponte, passa de uma Entrada para uma Saída de forma Transparente;
• WDS – função que coloca um conjunto de AP em uma única rede;
• Roaming – Função de conectar um AP de forma móvel em outras conexões;
• Mesh – Protocolo que dá capacidade de elaborar arranjos móveis e dinâmicos, onde o módulo AP recebe e transmite sinais.

As Redes WI-FI são de fácil detecção no ambiente, logo estão sujeitas a ataques de intrusão ou até mesmo perda de integridade de informação, para isso é importante o entendimento que é necessário uma criptografia e autenticação de dados que trafegam pelo sistema.

De acordo com a segurança da rede industrial, existem três aspectos que devem ser considerados: confidencialidade, integridade e disponibilidade.
• Confidencialidade: Garantia da informação somente para usuário autorizado;
• Integridade: Informação somente pode ser modificada por usuário autorizado;
• Disponibilidade: Acesso permanente as informação pelos usuários autorizados.

As tecnologias de Segurança para redes WI-FI são listadas abaixo, com suas principais características:
• WEP – Wired Equivalent Privacy
• 1999
• Primeiro Protocolo de Segurança
• 128 bits
• Não é Considerado Padrão desde 2004
• Fácil de ser Quebrado

• WPA – Wi-Fi Protected Access
• 2003
• Evolução do WEP
• 256 bits
• Tinha Compatibilidade com WEP
• Ataques feitos em Sistemas Suplementares

• WPA2 – Wi-Fi Protected Access II
• 2006
• Sistema Padrão Atualmente
• Função: AES (Advanced Encryption Standard)
• Função: CCMP (Counter Cipher Mode)
• Necessita Alto Poder Processamento
• Muito Avançado – Alguns Dispositivos não Suportam

Mas, qual arranjo e configuração executar, em face de tantos recursos, a resposta é, quanto mais recursos, melhor e para um entendimento fácil, podemos pontuar das melhores configurações de segurança, até a rede aberta abaixo:

1. WPA 2 com AES habilitado;
2. WPA com AES habilitado;
3. WPA com AES e TKIP * habilitado;
4. WPA apenas com TKIP habilitado;
5. WEP;
6. Rede aberta.

TKIP (abreviatura para Temporal Key Integrity Protocol) é um método de encriptação. O TKIP disponibiliza uma chave “per-packet” que junta a integridade da messagem e um mecanismo de reenvio de chave.

AES (abreviatura para Advanced Encryption Standard) é um standard autorizado de encriptação forte para WI-FI.
WPA-PSK/ WPA2-PSK e TKIP ou AES usam uma “Pre-Shared Key” (PSK) que possui 8 ou mais caracteres de extensão, até um máximo de 63 caracteres.

WPA2-PSK é um dos sistemas recomendados para autenticação de dados e AES é um dos sistemas recomendados para criptografia dos dados.

Quando pensamos em aplicações sem fio, os dispositivos estão conectados trocando informações e serviços entre si através de endereços, normalmente por IP, na camada 3 de dados, é usual e via de regra não há muito problema de perda de conexão.

Mas e quando é necessário fazer a troca de informações pelo Acesso do Meio, na camada 2 no MAC, alguns protocolos industriais trabalham neste formato, por exemplo , PROFINET.

Para isso há um recurso chamado de Coordenação, onde através de funções de sincronismo e coordenada, estabelece-se conexão controlada dos pontos MAC.
Existem dois tipos de controle de acesso ao meio e é baseado em funções de coordenação:

• DCF – Distributed Coordination Function ou Função de Coordenação Distribuída

• PCF – Point Coordination Function ou Função de Coordenação Pontual

DCF – apresenta dois métodos de acesso:
• DCF básico utilizando CSMA/CA – Carrier sense multiple access with collision avoidance – (Tenta Evitar Colisão);
• DCF com extensão RTS/CTS – Request to Send / Clear to Send (Tenta Sincronizar a Rede por um Tempo Conhecido);
• Para aplicações simples.

PCF – Point Coordination Function:
• Cada estação Cliente possui um Slot Time
• Melhora o Determinismo da Rede
• Não Prioriza Mensagens

Para a implantação de sistemas de Rede WI-FI, podemos pontuar algumas boas práticas abaixo, lembrando que é necessário um bom projeto de rede:
• Esteja certo do propósito da rede Wireless WI-FI, o que se espera e principalmente porque substituiu o cabo;
• Analise o a Visada do Ambiente, se possível contrate um serviço de Site Survey;
• Contrate uma empresa especialista para elaborar a especificação de acordo com sua necessidade;
• Configure os Client´s e suba os serviços conectados aos AP´s, analise a intensidade e qualidade do sinal;
• Implante os periféricos e configure, repetidores, roteadores, teste as desconexões lógicas;
• Faça teste de tráfego e broadcast, analise de preferência baseado no protocolo de trabalho;
• Faça cenários de desconexão, libere para trabalho.
Com a tecnologia de redes evoluindo constantemente, podemos descrever algumas tendências na indústria, que despontam como próximas tecnologias:
• Ampla utilização das redes WI-FI para distribuir informação na Planta;
• Entrega de Informações no Cloud e Big Data, para armazenamento e análise de dados da Operação e Manutenção via WI-FI;
• Convergência das Redes Industriais e Protocolos para Ethernet, facilitando a disseminação da informação via WI-FI.

Concluímos que as redes WI-FI na indústria são a próxima fronteira, uma vez que a ethernet industrial se consolida como padrão, as redes WI-FI aderem a tendência da entrega de informações com baixo custo, de forma rápida e segura, atendendo aos requisitos da indústria 4.0.